Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive photoreceptors contributing both to image and non-image-forming (NIF) functions of the eye. They convey light signal to the brain to modulate circadian entrainment, sleep, alertness, cognition, brightness perception and coarse vision. Given that rods and cones also contribute to all these impacts of light, isolating mRGC visual and NIF roles in humans is challenging so that mRGC functions remains to be fully characterized. Here, we evaluated light-driven visual and cognitive brain responses in Leber's Hereditary Optic Neuropathy (LHON), an inherited optic neuropathy that is characterized by a selective relative sparing of the melanopsin-expressing retinal ganglion cells (mRGCs). Twelve patients and twelve matched healthy controls (HC) were enrolled in a functional brain magnetic resonance imaging (fMRI) protocol including visual and visual-cognitive paradigms under blue (480 nm) and red (620 nm) light exposures. Primary visual cortex activation was detected in LHON patients; in particular higher occipital activation was found in response to sustained blue vs. red stimulation in LHON vs. HC. Similarly, brain responses to the executive task were larger under blue vs. red light in LHON over lateral prefrontal cortex. These findings are in line with the relative mRGC sparing demonstrated in LHON and support the mRGC contribution to both non-visual and visual brain functions, with potential implication for visual rehabilitation in hereditary optic neuropathy patients.

Evangelisti S., La Morgia C., Testa C., Manners D.N., Brizi L., Bianchini C., et al. (2021). Brain functional MRI responses to blue light stimulation in Leber's hereditary optic neuropathy. BIOCHEMICAL PHARMACOLOGY, 191, 114488-114488 [10.1016/j.bcp.2021.114488].

Brain functional MRI responses to blue light stimulation in Leber's hereditary optic neuropathy

Evangelisti S.;La Morgia C.;Testa C.;Manners D. N.;Brizi L.;Bianchini C.;Carbonelli M.;Tonon C.;Carelli V.;Lodi R.
2021

Abstract

Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive photoreceptors contributing both to image and non-image-forming (NIF) functions of the eye. They convey light signal to the brain to modulate circadian entrainment, sleep, alertness, cognition, brightness perception and coarse vision. Given that rods and cones also contribute to all these impacts of light, isolating mRGC visual and NIF roles in humans is challenging so that mRGC functions remains to be fully characterized. Here, we evaluated light-driven visual and cognitive brain responses in Leber's Hereditary Optic Neuropathy (LHON), an inherited optic neuropathy that is characterized by a selective relative sparing of the melanopsin-expressing retinal ganglion cells (mRGCs). Twelve patients and twelve matched healthy controls (HC) were enrolled in a functional brain magnetic resonance imaging (fMRI) protocol including visual and visual-cognitive paradigms under blue (480 nm) and red (620 nm) light exposures. Primary visual cortex activation was detected in LHON patients; in particular higher occipital activation was found in response to sustained blue vs. red stimulation in LHON vs. HC. Similarly, brain responses to the executive task were larger under blue vs. red light in LHON over lateral prefrontal cortex. These findings are in line with the relative mRGC sparing demonstrated in LHON and support the mRGC contribution to both non-visual and visual brain functions, with potential implication for visual rehabilitation in hereditary optic neuropathy patients.
2021
Evangelisti S., La Morgia C., Testa C., Manners D.N., Brizi L., Bianchini C., et al. (2021). Brain functional MRI responses to blue light stimulation in Leber's hereditary optic neuropathy. BIOCHEMICAL PHARMACOLOGY, 191, 114488-114488 [10.1016/j.bcp.2021.114488].
Evangelisti S.; La Morgia C.; Testa C.; Manners D.N.; Brizi L.; Bianchini C.; Carbonelli M.; Barboni P.; Sadun A.A.; Tonon C.; Carelli V.; Vandewalle ...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/864647
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact