In this note we give a proof-by-formula of certain important embedding inequalities on a dyadic tree. We also consider the case of a bi-tree, where a different approach is explained.
Arcozzi, N., Holmes, I., Mozolyako, P., Volberg, A. (2021). Bellman Function Sitting on a Tree. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021(16), 12037-12053 [10.1093/imrn/rnz224].
Bellman Function Sitting on a Tree
Arcozzi, N;
2021
Abstract
In this note we give a proof-by-formula of certain important embedding inequalities on a dyadic tree. We also consider the case of a bi-tree, where a different approach is explained.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1809.03397v2.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
506.3 kB
Formato
Adobe PDF
|
506.3 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.