In this note we give a proof-by-formula of certain important embedding inequalities on a dyadic tree. We also consider the case of a bi-tree, where a different approach is explained.

Arcozzi, N., Holmes, I., Mozolyako, P., Volberg, A. (2021). Bellman Function Sitting on a Tree. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021(16), 12037-12053 [10.1093/imrn/rnz224].

Bellman Function Sitting on a Tree

Arcozzi, N;
2021

Abstract

In this note we give a proof-by-formula of certain important embedding inequalities on a dyadic tree. We also consider the case of a bi-tree, where a different approach is explained.
2021
Arcozzi, N., Holmes, I., Mozolyako, P., Volberg, A. (2021). Bellman Function Sitting on a Tree. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021(16), 12037-12053 [10.1093/imrn/rnz224].
Arcozzi, N; Holmes, I; Mozolyako, P; Volberg, A
File in questo prodotto:
File Dimensione Formato  
1809.03397v2.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 506.3 kB
Formato Adobe PDF
506.3 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/864560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact