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BELLMAN FUNCTION SITTING ON A TREE

NICOLA ARCOZZI, IRINA HOLMES, PAVEL MOZOLYAKO, AND ALEXANDER VOLBERG

Abstract. In this note we give a proof-by-formula of certain important embedding inequalities on
a tree. We also consider the case of a bi-tree, where a different approach is explained.

0.1. Hardy operator on a tree. Let I0 be a unit interval. Let us associate the dyadic lattice
D(I0) and the uniform directed dyadic tree T in a usual way. First we define the Hardy operator,
the dual Hardy operator and the logarithmic potential: given a function ϕ : T → R+ we let

(Iϕ)(α) =
∑
β≥α

ϕ(β), α ∈ T ;

(I∗ϕ)(α) =
∑
β≤α

ϕ(β), β ∈ T ;

V ϕ(γ) = (II∗ϕ)(γ), γ ∈ T,

where ≤ is the natural order relation on T .
We always may think that the tree T is finite (albeit very large). By the boundary ∂T we

understand the vertices that are not connected to smaller vertices.
Each dyadic interval Q in D(I0) corresponds naturally to a vertex αQ.
Let µ be a measure on the tree T , so just the collection of non-negative numbers {µP }P∈T .

Assuming µ to be a measure on T , we have

(Iµ)(αR) =
∑
Q⊃R

µQ, Q,R ∈ D(I0);

(I∗µ)(αQ) = µ(Q) =
∑

P⊂Q,αP∈∂T
µP , Q ∈ D(I0);

V µ(αP ) = (II∗µ)(αP ), P ∈ D(I0),

the second equality is valid under the assumption of suppµ ⊂ ∂T .
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We will answer the question when I : `2(T ) → `2(T, µ). Passing to the adjoint operator we see
that this is equivalent to the following inequality

(0.1)
∑
Q∈T

( ∑
P≤Q

ϕ(P )µP
)2
.
(∑
R∈T

ϕ(R)2µR
)
.

Theorem 0.1. Operator I is a bounded operator I : `2(T )→ `2(T, µ) if and only if

(0.2)
∑

Q∈T,Q≤R

( ∑
P≤Q

µP
)2
.
( ∑
Q≤R

µQ
)
∀R ∈ T .

This is proved in Theorem 1.3 below by the use of Bellman function.

1. Bellman function on a tree

Theorem 1.1. Let dw be a positive measure on I0 := [0, 1]. Let 〈w〉I denote w(I)/|I|. Let ϕ be a
measurable test function. Then if

(1.1)
1

|J |
∑

I∈D(J)

〈w〉2I |I|2 ≤ 〈w〉J ∀J ∈ D(I0),

then

(1.2)
∑

I∈D(I0)

〈ϕw〉2I |I|2 . 〈ϕ2w〉I0 |I0|,

This can be obtained as a direct consequence of the weighted Carleson embedding theorem [4]:

Theorem 1.2. Let D be a dyadic lattice, w be any weight, and {αI}I∈D be a sequence of non-
negative numbers. Then, if

(1.3)
1

|J |
∑
I⊂J

αI〈w〉2I ≤ 〈w〉J ∀J ∈ D,

then

(1.4)
∑
I∈D

αI〈ϕ
√
w〉2I . ‖ϕ‖2L2 ,

for all ϕ ∈ L2.

Clearly, the conclusion of (1.4) may be rewritten as

1

|I0|
∑
I⊂I0

αI〈ϕw〉2I . 〈ϕ2w〉I0 .

Letting αI = |I|2 in (1.3), we obtain exactly Theorem 1.1.
We recall here that the proof of Theorem 1.2 in [4] was based upon the Bellman function

(1.5) B(F, f,A, v) := 4

(
F − f2

v +A

)
,

and three main properties this function satisfies are:
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(1) B is defined on:

f2 ≤ Fv;A ≤ v;

(2) 0 ≤ B ≤ CF , in this case with C = 4;
(3) Main Inequality:

(1.6) B(F, f,A, v)− 1

2

(
B(F−, f−, A−, v−) + B(F+, f+, A+, v+)

)
≥ f2

v2
m,

for all points in the domain such that

(1.7) F =
F− + F+

2
; f =

f− + f+

2
; v =

v− + v+

2
,

and

A = m+
A− +A+

2
,

for some m ≥ 0.

In particular, we have that the function B is concave.

1.1. Carleson embedding theorem on a dyadic tree. Now we wish to prove a version of
Theorem 1.1 on a dyadic tree. Specifically, suppose we have a dyadic tree originating at some
I0 ∈ D. Define a measure Λ on the tree as follows: to each node I ∈ D(I0) we associate a non-
negative number λI ≥ 0. We may think of I ∈ D(I0) as an interval in the dyadic tree by considering
{K ∈ D(I0) : K ⊂ I}. Then we define

Λ(I) :=
∑
K⊂I

λK ,

and the averaging operator

(Λ)I :=
1

|I|
Λ(I).

Given a function ϕ = {ϕ(I)}I∈D(I0) on the dyadic tree, we have∫
I
ϕdΛ =

∑
K⊂I

ϕ(K)λK ,

and

(ϕΛ)I :=
1

|I|

∫
I
ϕdΛ.

Theorem 1.3 (Carleson embedding theorem for a dyadic tree). Let I0 ∈ D, the dyadic tree
originating at I0 with notations as above, and {αI}I⊂I0 be a sequence of non-negative numbers.
Then, if

(1.8)
1

|I|
∑
K⊂I

αK(Λ)2
K ≤ (Λ)I , ∀I ∈ D(I0),

then

(1.9)
1

|I0|
∑
I⊂I0

αI(ϕ
√

Λ)2
I ≤ 4(ϕ2)I0 ,
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where

(ϕ
√

Λ)I :=
1

|I|
∑
K⊂I

ϕ(K)
√
λK and (ϕ2)I0 :=

1

|I0|
∑
I⊂I0

ϕ(I)2.

Note that the conclusion of (1.9) may be rewritten as∑
I⊂I0

αI(ϕΛ)2
I ≤ 4(ϕ2Λ)I0 .

Letting αI = |I|2 in (1.8), we obtain:

Corollary 1.4. Let I0 ∈ D, the dyadic tree originating at I0 with notations as above. Then, if

1

|I|
∑
K⊂I
|K|2(Λ)2

K ≤ (Λ)I , ∀I ∈ D(I0),

then
1

|I0|
∑
I⊂I0

|I|2(ϕΛ)2
I ≤ 4(ϕ2Λ)I0 .

The proof of Theorem 1.3 is based also on the function B in (1.5), and on proving a more involved
version of (1.6) – this will be Lemma 1.5.

For now, let us create a Bellman function for the dyadic tree. Below, we have in the left column
the setup for the original Bellman function of [4], and on the right we construct the Bellman function
for our Carleson embedding theorem on the dyadic tree.

Classic Weighted CET

B1(F, f,A, v) := sup
ϕ,w,α

1

|I0|
∑
I⊂I0

αI〈ϕ
√
w〉2I

where the supremum is over all functions ϕ on
I0, weights w on I0, and w-Carleson sequences
α = (αI)I⊂I0 such that:

• 〈ϕ2〉I0 = F
• 〈ϕ
√
w〉I0 = f

• 1
|I0|
∑

I⊂I0 αI〈w〉
2
I = A

• 〈w〉I0 = v.

CET on Dyadic Tree

B2(F, f,A, v) := sup
T,ϕ,Λ,α

1

|I0|
∑
I⊂I0

αI(ϕ
√

Λ)2
I

where the supremum is over all dyadic trees T
originating at I0, measures Λ on T , functions ϕ
on T and non-negative sequences α = (αI)I⊂I0
such that:

• (ϕ2)I0 = F

• (ϕ
√

Λ)I0 = f
• 1
|I0|
∑

I⊂I0 αI(Λ)2
I = A

• (Λ)I0 = v.

Both will be defined on {f2 ≤ Fv;A ≤ v}, and both will satisfy some Main Inequality – which
will turn out to be the fundamental distinction between the two. Let us also mention here that the
function B in (1.5) is not the “true” Bellman function B1 above, but a supersolution. This refers
in this case to any function which satisfies properties (1) – (3) in Section 1. The true Bellman
function B1 was found in [5].

Now let us discuss the Main Inequalities for these functions. For B1, (1.6) was obtained in
the usual way, by running the Bellman machine separately on each half of an interval I0 – see
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(b) Main Inequality for B2 – dyadic tree case

Figure 1. Deducing the Main Inequalities for B

Figure 1(A): choose weights w± and functions ϕ± supported on I±0 , and w±-Carleson sequences
α± = (αI)I⊂I±0

, in such a way that they give the supremum for B1(F±, f±, A±, v±) up to some ε.

One then easily obtains a weight w and a function ϕ on I0 by concatenation. In the case of
the sequence α, one must choose an αJ > 0 arbitrarily though, as long as the resulting sequence
remains w-Carleson. This is what produces the m term in (1.6).

Now let us turn to B2 and proceed similarly: take two dyadic trees T± originating at I±0 , each
equipped with measures Λ± = {λ±I }I⊂I±0 , two function ϕ± = {ϕ±(I)}I⊂I±0 on the trees, and non-

negative sequences α± = {αI}I⊂I±0 such that:

F± = (ϕ2
±)I±0

; f± = (ϕ±
√

Λ±)I±0
; A± =

1

|I±0 |
∑
K⊂I±0

α±K(Λ±)2
K ; v± = (Λ±)I±0

,

and such that:

B2(F±, f±, A±, v±)− ε < 1

|I±0 |
∑
I⊂I±0

α±I (ϕ±
√

Λ±)2
I .

We can “concatenate” the two trees into a new dyadic tree T centered at I0 – see Figure 1(B)
– but, here is the major difference from the usual dyadic situation: λI0 , ϕ(I0) and αI0 must all be
assigned to I0, they do not pre-exist. So let some arbitrary λI0 ≥ 0, αI0 ≥ 0 and ϕ(I0) ∈ R. Now
we have a new tree T , a measure Λ, a function ϕ and a sequence α. Next step is to figure out what
F, f,A, and v must be, through straightforward calculations.
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F = (ϕ2)I0 = b2I0 +
1

2
(F− + F+), where bI0 =

ϕ(I0)√
|I0|

f = (ϕ
√

Λ)I0 = aI0bI0 +
1

2
(f− + f+), where aI0 =

√
λI0√
|I0|

A =
1

|I0|
∑
K⊂I0

αK(Λ)2
K = cI0 +

1

2
(A− +A+), where cI0 =

1

|I0|
αI0(Λ)2

I0

v = (Λ)I0 = a2
I0 +

1

2
(v− + v+)

The tree T , along with Λ, ϕ, and α are then admissible for B2(F, f,A, v), and:

B2(F, f,A, v) ≥ 1

|I0|
∑
I⊂I0

αI(ϕ
√

Λ)2
I

=
cI0f

2

v2
+

1

2

(
1

|I−0 |
∑
I⊂I−0

α−I (ϕ−
√

Λ−)2
I +

1

|I+
0 |
∑
I⊂I+0

α+
I (ϕ+

√
Λ+)2

I

)

>
cI0f

2

v2
+

1

2

(
B2(F−, f−, A−, v−) + B2(F+, f+, A+, v+)

)
− ε.

Therefore, we have the Main Inequality for B2:

(1.10) c
f2

v2
≤ B2(F, f,A, v)− 1

2

(
B2(F−, f−, A−, v−) + B2(F+, f+, A+, v+)

)
,

for all quadruplets in the domain of B2 such that

(1.11) F = F̃ + b2; f = f̃ + ab; A = Ã+ c; v = ṽ + a2,

and

F̃ :=
F− + F+

2
; f̃ :=

f− + f+

2
; Ã :=

A− +A+

2
; ṽ :=

v− + v+

2
,

and a ≥ 0, b ∈ R, c ≥ 0 are some real numbers.

Lemma 1.5. The function B in (1.5) satisfies the Main Inequality above in (1.10).

Before we prove this lemma, let us see how it proves Theorem 1.3.
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Proof of Theorem 1.3. For every I ∈ D(I0) define:

vI := (Λ)I =
1

|I|
λI +

1

2
(vI− + vI+) = a2

I + ṽI , where aI :=

√
λI
|I|

;

FI := (ϕ2)I =
1

|I|
ϕ(I)2 +

1

2
(FI− + FI+) = b2I + F̃I , where bI :=

ϕ(I)√
|I|

;

fI := (ϕ
√

Λ)I =
ϕ(I)
√
λI

|I|
+

1

2
(fI− + fI+) = aIbI + f̃I ;

AI :=
1

|I|
∑
K⊂I

αK(Λ)2
K =

αI(Λ)2
I

|I|
+

1

2
(AI− +AI+) = cI + ÃI , where cI :=

αI(Λ)2
I

|I|
.

Note then that

B(FI , fI , AI , vI) = B(b2I + F̃I , aIbI + f̃I , cI + ÃI , a
2
I + ṽI),

so we may apply Lemma 1.5 and obtain

αIf
2
I ≤ |I|B(xI)− |I−|B(xI−)− |I+|B(xI+).

Summing over I ∈ D(I0) and using the telescoping nature of the sum, we have∑
I∈I0

αIf
2
I ≤ |I0|B(FI0 , fI0 , AI0 , vI0) ≤ 4|I0|FI0 ,

which is exactly (1.9). �

Remark 1.6. Before we proceed with the proof of Lemma 1.5 , let us note that the big and
essential difference with Theorem 1.1 now is that in the proof of Theorem 1.1 {vI}I∈D, {fI}I∈D,
{FI}I∈D are all martingales. This is the standard situation, and it is pictured in Figure 2 (A).

!"

!#
!

A. B. C. D. E.

$"

$#

$

%"

%#

%
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&#

&
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'

Figure 2. Deducing the Main Inequalities for B

Now looking at (1.11), they are only supermartingales in the case of the F , A and v variables,
and even worse, in the case of f we can have either a supermartingale or a submartingale! In other
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words, we do not have the property (1.7) anymore. Instead, as pictured in Figure 2 (B) – (E),

FI ≥
FI− + FI+

2
; AI ≥

AI− +AI+
2

; vI ≥
vI− + vI+

2
,

and

fI ≥ or ≤
fI− + fI+

2
.

This is an essential difference, because there is less cancellation, and, indeed, the fact that
{fI}I∈D can be both a super or a submartingale can destruct the whole proof. As a small miracle
the “good” supermartingale properties of {vI}I∈D, {FI}I∈D and {AI}I∈D allow us to neutralize
the “bad” sub/supermartingale property of {fI}I∈D. The exact calculation of this “good”–“bad”
interplay will be in (1.14). We wish to explain now why some variables, the supermartingales FI ,
AI , vI , are good and some, namely, fI is bad. The explanation is simple: the good ones are those
that give positive partial derivative of B, the bad is the one that gives a negative partial derivative
of B. In fact,

∂B
∂A
≥ 0,

∂B
∂v
≥ 0,

∂B
∂F

= 4,

∂B
∂f
≤ 0 .

Proof of Lemma 1.5. Recall that if g is a concave, differentiable function on a convex domain
S ⊂ Rn, then

g(x)− g(x∗) ≤
n∑
i=1

∂g

∂xi
(x∗) · (xi − x∗i ),

for all x, x∗ ∈ S. Denoting x := (F, f,A, v), for the function B, this takes the particular form:

1

4

(
B(x)− B(x∗)

)
≤ (F − F ∗)− 2f∗

v∗ +A∗
(f − f∗)

+
(f∗)2

(v∗ +A∗)2
(A−A∗) +

(f∗)2

(v∗ +A∗)2
(v − v∗).(1.12)

In particular:

(1.13)
1

4

(
B(F, f,A, v)− B(F, f,A− c, v)

)
≥ c f2

(v +A)2
≥ c f

2

4v2
,

where the last inequality follows because 0 ≤ A ≤ v.
By (1.13):

c
f2

v2
≤
(
B(F, f,A, v)− B(F̃ , f̃ , A− c, ṽ)

)
+

(
B(F̃ , f̃ , A− c, ṽ)− B(F, f,A− c, v)

)
.

We claim that the term in the second parenthesis is negative: apply (1.12) to obtain

1

4

(
B(F̃ , f̃ , A− c, ṽ)− B(F, f,A− c, v)

)
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≤ −b2 − 2f

v +A− c
(−ab) +

f2

(v +A− c)2
(−a2)(1.14)

−
(
b− af

v +A− c
)2 ≤ 0.

Then

c
f2

v2
≤

(
B(F, f,A, v)− B(F̃ , f̃ , A− c, ṽ)

)
≤ B(F, f,A, v)− 1

2

(
B(F−, f−, A−, v−) + B(F+, f+, A+, v+)

)
,

where (A− + A+)/2 = A − c, and the last inequality follows by concavity of B. This proves the
lemma. �

2. Maximal theorem on a tree

Now we are going to prove the result slightly more general than Corollary 1.4 from the previous
section.

Theorem 2.1. Let I0 ∈ D, the dyadic tree originating at I0 with notations as above. Then, if

1

|I|
∑
K⊂I
|K|2(Λ)2

K ≤ (Λ)I , ∀I ∈ D(I0),

then
1

|I0|
∑
I⊂I0

|I|2(Λ)2
I sup
K: I⊂K

(
(ϕΛ)K
(Λ)K

)2

. (ϕ2Λ)I0 .

The proof – for a change – is a stopping time proof and not a Bellman proof.

Proof. For every vertex H of the tree, let us introduce the set of vertices EH . Namely, let J be the
first successor of H such that

(ϕΛ)J
(Λ)J

≥ 2
(ϕΛ)H
(Λ)H

.

It may happen of course that J is not alone, and there are several first successors with this property.
We call by EH all vertices that are successors of all these J ′s and also all such J ′s.

Now we introduce another set of vertices associated with H. Consider all successors of H which
are not in EH . All of them plus H itself form the collection that is called OH . This set in never
empty (it contains H) and can include all successors of H.

Now we first assign H = I0 and let {J} be the first successors of H with the property above.
We call this family stopping vertices of first generation, and denote it by S1. Then for any H ∈ S1

we repeat the procedure thus having stopping vertices of the second generation: S2.
For each j and each H ∈ Sj , we have EH and OH . Notice that all such OH are disjoint. We call

I0 the stopping vertex of 0 generation, and let S = ∪∞j=0Sj .
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Then ∑
I⊂I0

|I|2(Λ)2
I sup
K: I⊂K

(
(ϕΛ)K
(Λ)K

)2

=
∑
H∈S

∑
I∈OH

|I|2(Λ)2
I sup
K: I⊂K

(
(ϕΛ)K
(Λ)K

)2

≤ 4
∑
H∈S

(
(ϕΛ)H
(Λ)H

)2 ∑
I∈OH

|I|2(Λ)2
I

≤ 4
∑
H∈S

(
(ϕΛ)H
(Λ)H

)2

Λ(H) .

The last inequality uses the assumptions of the theorem. But notice that by definition of EH we
easily get

Λ(EH) ≤ 1

2
Λ(H)⇒ Λ(H) ≤ 2Λ(OH) .

Hence

(2.1)
∑
I⊂I0

|I|2(Λ)2
I sup
H: I⊂H

(
(ϕΛ)I
(Λ)I

)2

≤ 8
∑
H∈S

(
(ϕΛ)H
(Λ)H

)2

Λ(OH).

Now, define βH for H ⊂ I0 by βH := Λ(OH) if H ∈ S, and βH := 0 otherwise. Note that, by
disjointness of OH , we have ∑

H⊂K
βH ≤ Λ(K), ∀K ⊂ I0.

Therefore, if we let

αH :=
βH

(Λ)2
H

then the sequence αH satisfies the requirements of the Carleson Embedding Theorem 1.3 for the
dyadic tree. So we may rewrite the right hand side of (2.1) in terms of βH and apply Theorem 1.3:

1

|I0|
∑
I⊂I0

|I|2(Λ)2
I sup
H: I⊂H

(
(ϕΛ)I
(Λ)I

)2

≤ 8
1

|I0|
∑
H⊂I0

αH(ϕΛ)2
H

≤ 32(ϕ2Λ)I0 ,

completing the proof of Theorem 2.1.
�
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3. Two-dimensional version of Theorem 1.1 and dyadic rectangles

Theorem 3.1. Let µ be a positive measure on R0 = [0, 1)2. Let 〈µ〉R denote µ(R)
|R| . Let ϕ be a

measurable test function. Then, if

(3.1)
∑

Q⊂E, Q∈D(R0)

〈µ〉2Q|Q|2 ≤ µ(E), ∀ E ⊂ ∂T 2,

then

(3.2)
∑

Q∈D(R0)

〈ϕµ〉2Q|Q|2 . 〈ϕ2µ〉R0 |R0|.

Remark 3.2. There are now two proofs of this theorem, one in [3] and one in [2]. The paper [3]
uses capacity and strong capacitary inequalities on the bi-tree, while the proof in [2] avoids the
notion of capacity and strong capacitary estimates completely. Note that neither the claim nor the
conclusion of Theorem 3.1 uses any kind of capacity.

Remark 3.3. We believe that it would be not enough to check (3.1) only for single rectangles. Let
us see anyway what we can achieve assuming this one box condition, through a Bellman argument.

3.1. One box condition and its corollary. In the next theorem it is essential to think that
µ = {λβ} is the measure on ∂T 2. Every dyadic rectangle R corresponds to a node of T 2, and we
will use this in the notations below.

Theorem 3.4. Let µ be a positive measure on R0 = [0, 1)2. Let 〈µ〉R denote µ(R)
|R| . Let ϕ be a

measurable test function. Then, if

(3.3)
∑

Q⊂R, Q∈D(R0)

〈µ〉2Q|Q|2 ≤ µ(R), ∀ rectangle R,

then

(3.4)
∑

Q∈D(R0)

〈ϕµ〉2Q|Q|3 . 〈ϕ2µ〉R0 |R0|.

Proof. We consider exactly the same function B(x), x = (F, f,A, v),

B(x) = F − f2

v +A
.

Given a rectangle R we consider

FR =
1

|R|
∑
β≤R

φ2
βλβ =

1

|R|

∫
R
φ2dµ, fR =

1

|R|
∑
β≤R

φβλβ =
1

|R|

∫
R
φdµ,

vR =
1

|R|
∑
β≤R

λβ =
µ(R)

|R|
, AR =

1

|R|
∑
β≤R

v2
β|Rβ|2, xR = (FR, . . . , vR) .
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Let R+, R− be right and left half-rectangles of R, and Rt, Rb be top and bottom half-rectangles of
R (so, e.g., if R = I × J , the Rt = I × J+). Now let us estimate from below

B(xR)− 1

4

(
B(xR−) +B(xR+) +B(xRt) +B(xRb)

)
.

As µ is concentrated on the boundary, we see immediately, that

FR =
1

4

(
FR− + FR+ + FRt + FRb

)
, fR =

1

4

(
fR− + fR+ + fRt + fRb

)
.

At the same time,

AR −
1

4

(
AR− +AR+ +ARt +ARb

)
≥ 1

|R|
µ(R)2, vR =

1

4

(
vR− + vR+ + vRt + vRb

)
.

The second equality here is just because vR = 1
2

(
vR− + vR+

)
. And vR = 1

2

(
vRt + vRb

)
. The first

one because any β-term in AR such that this term happens to be in two rectangles, e.g. in AR−
and ARt , will be cancelled in the difference. The terms that happen only in one rectangle (this is
the case for R−− as an example) will be in coefficient 1

|R| in AR, and only with coefficient 1
2|R| in

1
4

(
AR− +AR+ +ARt +ARb

)
, so it gives a partial (positive) contribution to AR− 1

4

(
AR− +AR+ +

ARt + ARb

)
. And of course, 1

|R|µ(R)2 is in AR and in none of AR− , AR+ , ARt , ARb , so it also the

part of the contribution.
So we see that three variables F, f, v split in a “martingale” way, and for AR we have the above

“super-martingale” inequality.
Thus, considering

x∗R = (FR; fR;
1

4
(AR− +AR+ +ARt +ARb); vR)

we can write

B(xR)−B(x∗R) ≥ ∂B

∂A
(xR)(xR − x∗R);

B(x∗R) ≥ 1

4

(
B(xR−) +B(xR+) +B(xRt) +B(xRb)

)
.

Here both inequalities are corollaries of the concavity of B, in the first one we used that all coor-
dinates of xR, x

∗
R coincide except the A-coordinate. Theerfore, now we get

B(xR)− 1

4

(
B(xR−) +B(xR+) +B(xRt) +B(xRb)

)
≥ c

f2
R

v2
R

µ(R)2

|R|

≥ c
1
|R|2
( ∫

R φdµ
)2

µ(R)2/|R|2
µ(R)2

|R|
=
( ∫

R
φdµ

)2
/|R| .
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Multiply this by |R|2. We get a term of telescopic sum on the left:

|R|2B(xR)−
(
|R−|2B(xR−) + |R+|2B(xR+) + |Rt|2B(xRt) + |Rb|2B(xRb)

)
≥ c|R|

( ∫
R
φdµ

)2
.

Notice that on the next step we pick up all terms |R|
( ∫

R φdµ
)2

with R := R−, R+, R
t, Rb. Theorem

is proved. �
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Università di Bologna, Department of Mathematics, Piazza di Porta S. Donato, 40126 Bologna
(BO)

E-mail address: pavel.mozolyako@unibo.it

Department of Mathematics, Michigan Sate University, East Lansing, MI. 48823
E-mail address: volberg@math.msu.edu (A. Volberg)

http://arxiv.org/abs/1811.00978
http://arxiv.org/abs/1811.04990

	0.1. Hardy operator on a tree
	1. Bellman function on a tree
	1.1. Carleson embedding theorem on a dyadic tree

	2. Maximal theorem on a tree
	3. Two-dimensional version of Theorem ?? and dyadic rectangles
	3.1. One box condition and its corollary

	References

