In-memory computing is an emerging computing paradigm enabling deep-learning inference at significantly higher energy-efficiency and reduced latency. The essential idea is mapping the synaptic weights of each layer to one or more in-memory computing (IMC) cores. During inference, these cores perform the associated matrix-vector multiplications in place with O(1) time complexity, obviating the need to move the synaptic weights to additional processing units. Moreover, this architecture enables the execution of these networks in a highly pipelined fashion. However, a key challenge is designing an efficient communication fabric for the IMC cores. In this work, we present one such communication fabric based on a graph topology that is well-suited for the widely successful convolutional neural networks (CNNs). We show that this communication fabric facilitates the pipelined execution of all state-of-the-art CNNs by proving the existence of a homomorphism between the graph representations of these networks and that corresponding to the proposed communication fabric. We then present a quantitative comparison with established communication topologies and show that our proposed topology achieves the lowest bandwidth requirements per communication channel. Finally, we present one hardware implementation and show a concrete example of mapping ResNet-32 onto an IMC core array interconnected via the proposed communication fabric.

Efficient Pipelined Execution of CNNs Based on In-Memory Computing and Graph Homomorphism Verification

Dazzi M.;Benini L.;
2021

Abstract

In-memory computing is an emerging computing paradigm enabling deep-learning inference at significantly higher energy-efficiency and reduced latency. The essential idea is mapping the synaptic weights of each layer to one or more in-memory computing (IMC) cores. During inference, these cores perform the associated matrix-vector multiplications in place with O(1) time complexity, obviating the need to move the synaptic weights to additional processing units. Moreover, this architecture enables the execution of these networks in a highly pipelined fashion. However, a key challenge is designing an efficient communication fabric for the IMC cores. In this work, we present one such communication fabric based on a graph topology that is well-suited for the widely successful convolutional neural networks (CNNs). We show that this communication fabric facilitates the pipelined execution of all state-of-the-art CNNs by proving the existence of a homomorphism between the graph representations of these networks and that corresponding to the proposed communication fabric. We then present a quantitative comparison with established communication topologies and show that our proposed topology achieves the lowest bandwidth requirements per communication channel. Finally, we present one hardware implementation and show a concrete example of mapping ResNet-32 onto an IMC core array interconnected via the proposed communication fabric.
Dazzi M.; Sebastian A.; Parnell T.; Francese P.A.; Benini L.; Eleftheriou E.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/860012
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 2
social impact