Multitarget-directed ligands (MTDLs) are considered a promising therapeutic strategy to address the multifactorial nature of Alzheimer's disease (AD). Novel MTDLs have been designed as inhibitors of human acetylcholinesterases/butyrylcholinesterases, monoamine oxidase A/B, and glycogen synthase kinase 3β and as calcium channel antagonists via the Biginelli multicomponent reaction. Among these MTDLs, (±)-BIGI-3h was identified as a promising new hit compound showing in vitro balanced activities toward the aforementioned recognized AD targets. Additional in vitro studies demonstrated antioxidant effects and brain penetration, along with the ability to inhibit the aggregation of both τ protein and β-amyloid peptide. The in vivo studies have shown that (±)-BIGI-3h (10 mg/kg intraperitoneally) significantly reduces scopolamine-induced cognitive deficits.
Ismaili L., Monnin J., Etievant A., Arribas R.L., Viejo L., Refouvelet B., et al. (2021). (±)- BIGI-3h: Pentatarget-Directed Ligand combining Cholinesterase, Monoamine Oxidase, and Glycogen Synthase Kinase 3β Inhibition with Calcium Channel Antagonism and Antiaggregating Properties for Alzheimer's Disease. ACS CHEMICAL NEUROSCIENCE, 12(8), 1328-1342 [10.1021/acschemneuro.0c00803].
(±)- BIGI-3h: Pentatarget-Directed Ligand combining Cholinesterase, Monoamine Oxidase, and Glycogen Synthase Kinase 3β Inhibition with Calcium Channel Antagonism and Antiaggregating Properties for Alzheimer's Disease
De Simone A.;Andrisano V.;Bartolini M.;
2021
Abstract
Multitarget-directed ligands (MTDLs) are considered a promising therapeutic strategy to address the multifactorial nature of Alzheimer's disease (AD). Novel MTDLs have been designed as inhibitors of human acetylcholinesterases/butyrylcholinesterases, monoamine oxidase A/B, and glycogen synthase kinase 3β and as calcium channel antagonists via the Biginelli multicomponent reaction. Among these MTDLs, (±)-BIGI-3h was identified as a promising new hit compound showing in vitro balanced activities toward the aforementioned recognized AD targets. Additional in vitro studies demonstrated antioxidant effects and brain penetration, along with the ability to inhibit the aggregation of both τ protein and β-amyloid peptide. The in vivo studies have shown that (±)-BIGI-3h (10 mg/kg intraperitoneally) significantly reduces scopolamine-induced cognitive deficits.File | Dimensione | Formato | |
---|---|---|---|
(±)-BIGI-3h_Manuscript_accepted.pdf
Open Access dal 03/04/2022
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.