Datacenters play a vital role in today's society. At large, a datacenter room is a complex controlled environment composed of thousands of computing nodes, which consume kW of power. To dissipate the power, forced air/liquid flow is employed, with a cost of millions of euros per year. Reducing this cost involves using free-cooling and average case design, which can create a cooling shortage and thermal hazards. When a thermal hazard happens, the system administrators and the facility manager must stop the production to avoid IT equipment damage and wear-out. In this paper, we study the thermal hazards signatures on a Tier-0 datacenter room's monitored data during a full year of production. We define a set of rules for detecting the thermal hazards based on the inlet and outlet temperature of all nodes of a room. We then propose a custom Temporal Convolutional Network (TCN) to predict the hazards in advance. The results show that our TCN can predict the thermal hazards with an Fl-score of 0.98 for a randomly sampled test set. When causality is enforced between the training and validation set the F1-score drops to 0.74, demanding for an in-place online re-training of the network, which motivates further research in this context.

Prediction of Thermal Hazards in a Real Datacenter Room Using Temporal Convolutional Networks

Seyedkazemi Ardebili M.;Zanghieri M.;Burrello A.;Beneventi F.;Acquaviva A.;Benini L.;Bartolini A.
2021

Abstract

Datacenters play a vital role in today's society. At large, a datacenter room is a complex controlled environment composed of thousands of computing nodes, which consume kW of power. To dissipate the power, forced air/liquid flow is employed, with a cost of millions of euros per year. Reducing this cost involves using free-cooling and average case design, which can create a cooling shortage and thermal hazards. When a thermal hazard happens, the system administrators and the facility manager must stop the production to avoid IT equipment damage and wear-out. In this paper, we study the thermal hazards signatures on a Tier-0 datacenter room's monitored data during a full year of production. We define a set of rules for detecting the thermal hazards based on the inlet and outlet temperature of all nodes of a room. We then propose a custom Temporal Convolutional Network (TCN) to predict the hazards in advance. The results show that our TCN can predict the thermal hazards with an Fl-score of 0.98 for a randomly sampled test set. When causality is enforced between the training and validation set the F1-score drops to 0.74, demanding for an in-place online re-training of the network, which motivates further research in this context.
Proceedings -Design, Automation and Test in Europe, DATE
1256
1259
Seyedkazemi Ardebili M.; Zanghieri M.; Burrello A.; Beneventi F.; Acquaviva A.; Benini L.; Bartolini A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/851592
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact