Temporal Convolutional Networks (TCNs) are promising Deep Learning models for time-series processing tasks. One key feature of TCNs is time-dilated convolution, whose optimization requires extensive experimentation. We propose an automatic dilation optimizer, which tackles the problem as a weight pruning on the time-axis, and learns dilation factors together with weights, in a single training. Our method reduces the model size and inference latency on a real SoC hardware target by up to 7.4× and 3×, respectively with no accuracy drop compared to a network without dilation. It also yields a rich set of Pareto-optimal TCNs starting from a single model, outperforming hand-designed solutions in both size and accuracy.
Pruning in Time (PIT): A Lightweight Network Architecture Optimizer for Temporal Convolutional Networks
Burrello A.;Conti F.;Lamberti L.;Benini L.;
2021
Abstract
Temporal Convolutional Networks (TCNs) are promising Deep Learning models for time-series processing tasks. One key feature of TCNs is time-dilated convolution, whose optimization requires extensive experimentation. We propose an automatic dilation optimizer, which tackles the problem as a weight pruning on the time-axis, and learns dilation factors together with weights, in a single training. Our method reduces the model size and inference latency on a real SoC hardware target by up to 7.4× and 3×, respectively with no accuracy drop compared to a network without dilation. It also yields a rich set of Pareto-optimal TCNs starting from a single model, outperforming hand-designed solutions in both size and accuracy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.