The Internet-of-Things (IoT) requires endnodes with ultra-low-power always-on capability for a long battery lifetime, as well as high performance, energy efficiency, and extreme flexibility to deal with complex and fast-evolving near-sensor analytics algorithms (NSAAs). We present Vega, an IoT endnode system on chip (SoC) capable of scaling from a 1.7- μW fully retentive cognitive sleep mode up to 32.2-GOPS (at 49.4 mW) peak performance on NSAAs, including mobile deep neural network (DNN) inference, exploiting 1.6 MB of state-retentive SRAM, and 4 MB of non-volatile magnetoresistive random access memory (MRAM). To meet the performance and flexibility requirements of NSAAs, the SoC features ten RISC-V cores: one core for SoC and IO management and a nine-core cluster supporting multi-precision single instruction multiple data (SIMD) integer and floating-point (FP) computation. Vega achieves the state-of-the-art (SoA)-leading efficiency of 615 GOPS/W on 8-bit INT computation (boosted to 1.3 TOPS/W for 8-bit DNN inference with hardware acceleration). On FP computation, it achieves the SoA-leading efficiency of 79 and 129 GFLOPS/W on 32- and 16-bit FP, respectively. Two programmable machine learning (ML) accelerators boost energy efficiency in cognitive sleep and active states.

Vega: A Ten-Core SoC for IoT Endnodes with DNN Acceleration and Cognitive Wake-Up from MRAM-Based State-Retentive Sleep Mode / Rossi D.; Conti F.; Eggiman M.; Mauro A.D.; Tagliavini G.; Mach S.; Guermandi M.; Pullini A.; Loi I.; Chen J.; Flamand E.; Benini L.. - In: IEEE JOURNAL OF SOLID-STATE CIRCUITS. - ISSN 0018-9200. - STAMPA. - 57:1(2022), pp. 127-139. [10.1109/JSSC.2021.3114881]

Vega: A Ten-Core SoC for IoT Endnodes with DNN Acceleration and Cognitive Wake-Up from MRAM-Based State-Retentive Sleep Mode

Rossi D.
;
Conti F.;Tagliavini G.;Guermandi M.;Chen J.;Benini L.
2022

Abstract

The Internet-of-Things (IoT) requires endnodes with ultra-low-power always-on capability for a long battery lifetime, as well as high performance, energy efficiency, and extreme flexibility to deal with complex and fast-evolving near-sensor analytics algorithms (NSAAs). We present Vega, an IoT endnode system on chip (SoC) capable of scaling from a 1.7- μW fully retentive cognitive sleep mode up to 32.2-GOPS (at 49.4 mW) peak performance on NSAAs, including mobile deep neural network (DNN) inference, exploiting 1.6 MB of state-retentive SRAM, and 4 MB of non-volatile magnetoresistive random access memory (MRAM). To meet the performance and flexibility requirements of NSAAs, the SoC features ten RISC-V cores: one core for SoC and IO management and a nine-core cluster supporting multi-precision single instruction multiple data (SIMD) integer and floating-point (FP) computation. Vega achieves the state-of-the-art (SoA)-leading efficiency of 615 GOPS/W on 8-bit INT computation (boosted to 1.3 TOPS/W for 8-bit DNN inference with hardware acceleration). On FP computation, it achieves the SoA-leading efficiency of 79 and 129 GFLOPS/W on 32- and 16-bit FP, respectively. Two programmable machine learning (ML) accelerators boost energy efficiency in cognitive sleep and active states.
2022
Vega: A Ten-Core SoC for IoT Endnodes with DNN Acceleration and Cognitive Wake-Up from MRAM-Based State-Retentive Sleep Mode / Rossi D.; Conti F.; Eggiman M.; Mauro A.D.; Tagliavini G.; Mach S.; Guermandi M.; Pullini A.; Loi I.; Chen J.; Flamand E.; Benini L.. - In: IEEE JOURNAL OF SOLID-STATE CIRCUITS. - ISSN 0018-9200. - STAMPA. - 57:1(2022), pp. 127-139. [10.1109/JSSC.2021.3114881]
Rossi D.; Conti F.; Eggiman M.; Mauro A.D.; Tagliavini G.; Mach S.; Guermandi M.; Pullini A.; Loi I.; Chen J.; Flamand E.; Benini L.
File in questo prodotto:
File Dimensione Formato  
VEGA_redux.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 7.54 MB
Formato Adobe PDF
7.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/847037
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 28
social impact