Temporal Convolutional Networks (TCNs) are emerging lightweight Deep Learning models for Time Series analysis. We introduce an automated exploration approach and a library of optimized kernels to map TCNs on Parallel Ultra-Low Power (PULP) microcontrollers. Our approach minimizes latency and energy by exploiting a layer tiling optimizer to jointly find the tiling dimensions and select among alternative implementations of the causal and dilated 1D-convolution operations at the core of TCNs. We benchmark our approach on a commercial PULP device, achieving up to 103 imes lower latency and 20.3 imes lower energy than the Cube-AI toolkit executed on the STM32L4 and from 2.9 imes to 26.6 imes lower energy compared to commercial closed-source and academic open-source approaches on the same hardware target.

Burrello A., Dequino A., Pagliari D.J., Conti F., Zanghieri M., MacIi E., et al. (2021). TCN Mapping Optimization for Ultra-Low Power Time-Series Edge Inference. NEW YORK : Institute of Electrical and Electronics Engineers Inc. [10.1109/ISLPED52811.2021.9502494].

TCN Mapping Optimization for Ultra-Low Power Time-Series Edge Inference

Burrello A.
;
Dequino A.;Conti F.;Zanghieri M.;Benini L.;
2021

Abstract

Temporal Convolutional Networks (TCNs) are emerging lightweight Deep Learning models for Time Series analysis. We introduce an automated exploration approach and a library of optimized kernels to map TCNs on Parallel Ultra-Low Power (PULP) microcontrollers. Our approach minimizes latency and energy by exploiting a layer tiling optimizer to jointly find the tiling dimensions and select among alternative implementations of the causal and dilated 1D-convolution operations at the core of TCNs. We benchmark our approach on a commercial PULP device, achieving up to 103 imes lower latency and 20.3 imes lower energy than the Cube-AI toolkit executed on the STM32L4 and from 2.9 imes to 26.6 imes lower energy compared to commercial closed-source and academic open-source approaches on the same hardware target.
2021
Proceedings of the International Symposium on Low Power Electronics and Design
1
6
Burrello A., Dequino A., Pagliari D.J., Conti F., Zanghieri M., MacIi E., et al. (2021). TCN Mapping Optimization for Ultra-Low Power Time-Series Edge Inference. NEW YORK : Institute of Electrical and Electronics Engineers Inc. [10.1109/ISLPED52811.2021.9502494].
Burrello A.; Dequino A.; Pagliari D.J.; Conti F.; Zanghieri M.; MacIi E.; Benini L.; Poncino M.
File in questo prodotto:
File Dimensione Formato  
ISPLED21___TCN_Library_redux.pdf

Open Access dal 04/08/2023

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 442.88 kB
Formato Adobe PDF
442.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/847018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 14
social impact