The synthesis of 3-pyridinols carrying alkyltelluro, alkylseleno, and alkylthio groups is described together with a detailed kinetic, thermodynamic, and mechanistic study of their antioxidant activity. When assayed for their capacity to inhibit azo-initiated peroxidation of linoleic acid in a water/chlorobenzene two-phase system, tellurium-containing 3-pyridinols were readily regenerable by N-acetylcysteine contained in the aqueous phase. The best inhibitors quenched peroxyl radicals more efficiently than α-tocopherol, and the duration of inhibition was limited only by the availability of the thiol reducing agent. In homogeneous phase, inhibition of styrene autoxidation absolute rate constants kinh for quenching of peroxyl radical were as large as 1 × 107 M−1 s−1, thus outperforming the best phenolic antioxidants including α-tocopherol. Tellurium-containing 3-pyridinols could be quantitatively regenerated in homogeneous phase by N-tert-butoxycarbonyl cysteine methyl ester, a lipid-soluble analogue of N-acetylcysteine. In the presence of an excess of the thiol, a catalytic mode of action was observed, similar to the one in the two-phase system. Overall, compounds bearing the alkyltelluro moiety ortho to the OH group were much more effective antioxidants than the corresponding para isomers. The origin of the high reactivity of these compounds was explored using pulse-radiolysis thermodynamic measurements, and a mechanism for their unusual antioxidant activity was proposed. The tellurium-containing 3-pyridinols were also found to catalyze reduction of hydrogen peroxide in the presence of thiol reducing agents, thereby acting as multifunctional (preventive and chain-breaking) catalytic antioxidants

S. Kumar, H. Johansson, T. Kanda, L. Engman, T. Mller, H. Bergenudd, et al. (2010). Catalytic Chain-Breaking Pyridinol Antioxidants. JOURNAL OF ORGANIC CHEMISTRY, 75(3), 716-725 [10.1021/jo902226t].

Catalytic Chain-Breaking Pyridinol Antioxidants

PEDULLI, GIAN FRANCO;AMORATI, RICCARDO;VALGIMIGLI, LUCA
2010

Abstract

The synthesis of 3-pyridinols carrying alkyltelluro, alkylseleno, and alkylthio groups is described together with a detailed kinetic, thermodynamic, and mechanistic study of their antioxidant activity. When assayed for their capacity to inhibit azo-initiated peroxidation of linoleic acid in a water/chlorobenzene two-phase system, tellurium-containing 3-pyridinols were readily regenerable by N-acetylcysteine contained in the aqueous phase. The best inhibitors quenched peroxyl radicals more efficiently than α-tocopherol, and the duration of inhibition was limited only by the availability of the thiol reducing agent. In homogeneous phase, inhibition of styrene autoxidation absolute rate constants kinh for quenching of peroxyl radical were as large as 1 × 107 M−1 s−1, thus outperforming the best phenolic antioxidants including α-tocopherol. Tellurium-containing 3-pyridinols could be quantitatively regenerated in homogeneous phase by N-tert-butoxycarbonyl cysteine methyl ester, a lipid-soluble analogue of N-acetylcysteine. In the presence of an excess of the thiol, a catalytic mode of action was observed, similar to the one in the two-phase system. Overall, compounds bearing the alkyltelluro moiety ortho to the OH group were much more effective antioxidants than the corresponding para isomers. The origin of the high reactivity of these compounds was explored using pulse-radiolysis thermodynamic measurements, and a mechanism for their unusual antioxidant activity was proposed. The tellurium-containing 3-pyridinols were also found to catalyze reduction of hydrogen peroxide in the presence of thiol reducing agents, thereby acting as multifunctional (preventive and chain-breaking) catalytic antioxidants
2010
S. Kumar, H. Johansson, T. Kanda, L. Engman, T. Mller, H. Bergenudd, et al. (2010). Catalytic Chain-Breaking Pyridinol Antioxidants. JOURNAL OF ORGANIC CHEMISTRY, 75(3), 716-725 [10.1021/jo902226t].
S. Kumar; H. Johansson; T. Kanda; L. Engman; T. Mller; H. Bergenudd; M. Jonsson; G. F. Pedulli; R. Amorati; L. Valgimigli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/84435
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 78
social impact