Let X be a complex scheme acted on by an affine algebraic group G. We prove that the Atiyah class of a G-equivariant perfect complex on X, as constructed by Huybrechts and Thomas, is G-equivariant in a precise sense. As an application, we show that, if G is reductive, the obstruction theory on the fine relative moduli space M → B of simple perfect complexes on a G-invariant smooth projective family Y → B is Gequivariant. The results contained here are meant to suggest how to check the equivariance of the natural obstruction theories on a wide variety of moduli spaces equipped with a torus action, arising for instance in Donaldson-Thomas theory and Vafa-Witten theory.

Ricolfi A.T. (2021). The equivariant Atiyah class. COMPTES RENDUS MATHÉMATIQUE, 359(3), 257-282 [10.5802/CRMATH.166].

The equivariant Atiyah class

Ricolfi A. T.
2021

Abstract

Let X be a complex scheme acted on by an affine algebraic group G. We prove that the Atiyah class of a G-equivariant perfect complex on X, as constructed by Huybrechts and Thomas, is G-equivariant in a precise sense. As an application, we show that, if G is reductive, the obstruction theory on the fine relative moduli space M → B of simple perfect complexes on a G-invariant smooth projective family Y → B is Gequivariant. The results contained here are meant to suggest how to check the equivariance of the natural obstruction theories on a wide variety of moduli spaces equipped with a torus action, arising for instance in Donaldson-Thomas theory and Vafa-Witten theory.
2021
Ricolfi A.T. (2021). The equivariant Atiyah class. COMPTES RENDUS MATHÉMATIQUE, 359(3), 257-282 [10.5802/CRMATH.166].
Ricolfi A.T.
File in questo prodotto:
File Dimensione Formato  
The equivariant Atiyah class.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 700.94 kB
Formato Adobe PDF
700.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/834821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact