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Abstract. Let X be a complex scheme acted on by an affine algebraic group G . We prove that the Atiyah class
of a G-equivariant perfect complex on X , as constructed by Huybrechts and Thomas, is G-equivariant in a
precise sense. As an application, we show that, if G is reductive, the obstruction theory on the fine relative
moduli space M → B of simple perfect complexes on a G-invariant smooth projective family Y → B is G-
equivariant. The results contained here are meant to suggest how to check the equivariance of the natural
obstruction theories on a wide variety of moduli spaces equipped with a torus action, arising for instance in
Donaldson–Thomas theory and Vafa–Witten theory.

Résumé. Soit X un schéma complexe sur lequel agit un groupe algébrique affine G . Nous démontrons que la
classe d’Atiyah d’un complexe parfait G-équivariant au dessus de X , construite par Huybrechts et Thomas, est
G-équivariante dans un sense précis. Comme application, nous démontrons que, si G est réductif, la théorie
d’obstruction sur l’espace de modules relatif fin M → B des complexes parfaits simples sur une famille lisse
projective Y → B est G-équivariante. Les résultats contenus ici vont suggérer comment vérifier l’équivariance
de la théorie d’obstruction naturelle sur un nombre d’espaces de modules munis de l’action d’un tore,
notamment ceux qui sont construits en théorie de Donaldson–Thomas et en théorie de Vafa–Witten.
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Introduction

Overview

The Atiyah class of a vector bundle V on a complex algebraic variety X , introduced in [1], is an
extension class

AtV ∈ Ext1
X (V ,V ⊗ΩX )

whose vanishing is equivalent to the existence of an algebraic connection on V . A general
definition of Atiyah class was given by Illusie for every complex of sheaves on a scheme [24]. The
Atiyah class is classically linked with the theory of jet bundles and sheaves of principal parts [13].

In this paper all schemes, stacks and group schemes are defined over C. Let G be an algebraic
group acting on a scheme X . Our first goal is to make sense of, and prove (see Theorem A), a
rigorous version of the following slogan:

The Atiyah class of a G-equivariant perfect complex on X is G-equivariant.
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Our main motivation comes from enumerative geometry: the Atiyah class is a crucial ingredient
in the construction of the obstruction theory [4, 29] on various moduli spaces of sheaves, such
as those appearing as main characters in Donaldson–Thomas theory, Pandharipande–Thomas
theory, Vafa–Witten theory. When the moduli space is acted on by a torus Gr

m , a powerful tool to
compute the virtual invariants defined via these obstruction theories is the virtual localisation
formula, proved in equivariant Chow cohomology by Graber and Pandharipande [15] and in K-
theory by Fantechi and Göttsche [11]. The localisation theorem requires as input an equivariant
obstruction theory. After confirming an equivariant version of Grothendieck duality (Section 2.5),
we show in a general example that the equivariance of the Atiyah class ensures that the obstruc-
tion theory it induces is itself equivariant, at least for reductive groups; since Gr

m is reductive, this
is enough to apply the virtual localisation formula.

By the above slogan, in a typical situation a “working mathematician” would only have
to verify the equivariance of the universal sheaf1 (or complex) on the moduli space under
consideration in order to apply the localisation theorem. This procedure is explained in detail
in Section 4, where we prove the equivariance of the universal object on the moduli space of
simple perfect complexes on a G-invariant smooth projective family (Proposition 52). A special
case of our construction will be considered in [12] in the context of Quot schemes over 3-
folds, in order to produce equivariant virtual fundamental classes and prove a special case of a
formula conjectured in [40]. Quot schemes have already appeared in many equivariant and non-
equivariant calculations in enumerative geometry [3, 8, 9, 14, 36–39], and this work is meant to
make the foundations of their virtual equivariant theory rigorous, as well as that of other moduli
spaces of sheaves.

Main result

Let X be a separated noetherian scheme over C, and let QCohX be the abelian category of quasi-
coherent OX -modules. Let E ∈ Perf X ⊂ D(QCohX ) be a perfect complex. Assuming X admits a
closed embedding in a smooth scheme, Huybrechts and Thomas defined the truncated Atiyah
class of E as an element

AtE ∈ Ext1
X (E ,E ⊗LX ), (1)

where LX ∈ D[−1,0](QCohX ) is the truncated cotangent complex. If X carries an action of a
complex algebraic group G , one can form the abelian category QCohG

X of G-equivariant quasi-
coherent sheaves on X . There is an exact functor Φ : D(QCohG

X ) → D(QCohX ) forgetting the
equivariant structure. We say that AtE is G-equivariant if the corresponding morphism E →
E ⊗LX [1] in D(QCohX ) can be lifted to D(QCohG

X ) along Φ.
Our first main result is the following.

Theorem A (Theorem 48). Let G be a complex affine algebraic group acting on a separated
noetherianC-scheme X admitting a G-equivariant embedding in a smooth G-scheme. Fix a perfect
complex E ∈ Perf X . Then every lift of E to D(QCohG

X ) makes AtE canonically G-equivariant.

Note that the assumption on X is satisfied as soon as, for instance, X is quasi-projective and
carries at least one G-equivariant line bundle.

1Most sheaf-theoretic moduli problems, including those for which one does not have a universal sheaf (but only a
universal twisted sheaf), should behave in a way that is entirely parallel to our discussion in Section 4.
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Application to equivariant obstruction theories

As we briefly recall below, the Atiyah class is the main ingredient in the construction of an
obstruction theory on moduli spaces of simple perfect complexes on a smooth projective family
Y → B , see [22, Thm. 4.1]. An obstruction theory [4, Def. 4.4] on a scheme X is a morphism
φ : E→ LX in D(QCohX ) such that H 0(φ) is an isomorphism and H −1(φ) is a surjection. See [4,
§7] for a relative version.

In case X is acted on by an algebraic group G , the complex LX has a canonical lift to D(QCohG
X )

(see Section 3.1.1), and one has the following notion.

Definition 1 (cf. [5,15]). Let G be an algebraic group acting on X . An obstruction theoryφ : E→ LX

is G-equivariant if φ can be lifted to a morphism in D(QCohG
X ).

To make a statement about equivariant obstruction theories, one needs to get a handle on
Hom-sets in D(QCohG

X ). For this, we restrict to G reductive (in order to exploit a technical result,
Lemma 37). For instance, the theory works for a torus G =Gr

m , which includes most applications
we have in mind.

Here is the statement of our second main result.

Theorem B (Theorem 53). Let G be an affine reductive algebraic group. Let Y → B be a G-
invariant smooth projective family of varieties. Let M → B be a fine moduli space of simple perfect
complexes on the fibres of Y → B. Then the relative obstruction theory on M → B is G-equivariant.

We refer to [22, §4.1] (or our Section 4.1) for the precise assumptions on M → B . We briefly
outline here the role of the Atiyah class and of Grothendieck duality in the construction of the
relative obstruction theory on M → B . Set X = Y ×B M , let E ∈ Perf X be the universal perfect
complex and let πM : X → M be the projection. The Atiyah class one has to consider is the “M-
component” of (1), namely

AtE/Y ∈ Ext1
X (E ,E ⊗π∗

MLM/B ).

Via the distinguished triangle

RHomX (E ,E)0 −→ RHomX (E ,E)
trace−−−→OX ,

the class AtE/Y projects onto an element of

Ext1
X (RHomX (E ,E)0,π∗

MLM/B ) ∼= Ext1−d
M (RπM∗(RHomX (E ,E)0 ⊗ωπM ),LM/B ), (2)

where d is the relative dimension of Y → B and the isomorphism is given by Grothendieck duality.
The image of AtE/Y along this journey is a morphism

φ : RπM∗(RHomX (E ,E)0 ⊗ωπM )[d −1] −→ LM/B ,

and it is shown in [22, Thm. 4.1] that φ is a relative obstruction theory in the sense of [4, §7]. The
following strategy will prove Theorem B:

(1) X has a G-action such that E is G-equivariant (Proposition 52).
(2) AtE/Y is a G-invariant extension (thanks to Theorem A).
(3) The Grothendieck duality isomorphism (2) is G-equivariant (Corollary 44).
(4) G-invariant extensions correspond to morphisms in D(QCohG

M ).

Step (4) uses the reductivity of G via Lemma 37.

Conventions. All schemes are noetherian and defined over C. By an algebraic group G we mean
a connected group scheme of finite type over C (often affine). We follow Olsson [35, Ch. 8] for
conventions on algebraic stacks (in particular, we make no separation assumptions). For an
algebraic stack X , we denote by QCohX the abelian category of quasi-coherent sheaves on the
lisse-étale site of X [35, Ch. 9], and D(X ) will denote the unbounded derived category of the
abelian category ModOX

of all OX -modules.
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1. Equivariant sheaves and complexes

1.1. The category of equivariant sheaves

We work in the algebraic category throughout. A standard reference for the background material
covered here, in the topological setup, is the book [6].

Let X be a noetherian scheme over C,2 equipped with an action σ : G × X → X of a group
scheme G . We call such a pair (X ,σ) a G-scheme. The abelian category ModOX

of OX -modules
contains the abelian subcategories QCohX (resp. CohX ) of quasi-coherent (resp. coherent) OX -
modules. We will mostly focus on QCohX in this paper.

Denoting by m : G ×G →G the group law of G , there is a commutative diagram

G ×G ×X G ×X

G ×X X

←→idG ×σ
← →m×idX

←→ σ

← →σ

(3)

translating the condition g · (h · x) = (g h) · x.
Let pi : G ×X → X and pi j : G ×G ×X →G ×X denote the projections onto the labeled factors.

Definition 2. A G-equivariant quasi-coherent sheaf on X is a pair (F ,ϑ) where F ∈ QCohX and
ϑ : p∗

2 F ∼→σ∗F is an isomorphism in QCohG×X compatible with the diagram (3). In other words,
ϑ is required to satisfy the cocycle condition

(m× idX )∗ϑ= (idG ×σ)∗ϑ◦p∗
23ϑ. (4)

The isomorphism ϑ is called a G-equivariant structure on F .

Explicitly, the cocycle condition (4) means that the diagram of isomorphisms

(m× idX )∗p∗
2 F (m× idX )∗σ∗F

p∗
23p∗

2 F (idG ×σ)∗σ∗F

p∗
23σ

∗F (idG ×σ)∗p∗
2 F

← →(m×idX )∗ϑ

⇐⇐ ⇐⇐
←→ p∗

23ϑ

⇐ ⇐

← →(idG ×σ)∗ϑ

commutes in QCohG×G×X .

2The theory works relatively to a fixed base scheme B (see Remark 6). This requires all relative operations (such as
fibre products) to be performed over B , as well as the requirement that G → B be flat (this would be needed e.g. in the
construction of f∗ and HomX in Section 1.3).
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Remark 3. Let (X ,σ) be a G-scheme. Then σ is flat. Indeed, it agrees with the composition

G ×X
γ−→G ×X

p2−→ X

where γ is the automorphism (g , x) 7→ (g ,σ(g , x)), having (g , x) 7→ (g ,σ(g−1, x)) as inverse.

Definition 4. A morphism (F ,ϑ) → (F ′,ϑ′) of G-equivariant quasi-coherent sheaves is a mor-
phism φ : F →F ′ in QCohX such that the diagram

p∗
2 F p∗

2 F ′

σ∗F σ∗F ′

←→ϑ

←→p∗
2φ

←→ ϑ′

←→σ∗φ

(5)

commutes in QCohG×X .

Notation 5. Let C be any of the categories ModOX
, QCohX or CohX . We let C G denote the

corresponding category of G-equivariant sheaves (F ,ϑ) where F ∈ C . We mainly focus on
C = QCohX . The category QCohG

X is aC-linear abelian category (see also Lemma 27 for a stronger
statement). Its (unbounded) derived category will be denoted D(QCohG

X ).

Consider the composite isomorphism

ρg : X ∼−→ {
g
}×X ,−→G ×X

σ−→ X , x 7−→σ(g , x).

Every object (F ,ϑ) ∈ QCohG
X comes with a collection of isomorphisms

ϑg : F ∼−→ ρ∗
g F , g ∈G ,

satisfying ϑhg = ρ∗
gϑh ◦ϑg , where ϑg is the restriction of ϑ along X ∼→ {

g
}×X ⊂G ×X .

Remark 6 (Relative version). In general, when working with a flat group scheme G → B acting
on a scheme X → B , where B is a base scheme, a G-equivariant sheaf (F ,ϑ) can be described in
the following equivalent fashion. Some notation first. For every B-scheme T , set XT = T ×B X =
T ×T XT and let FT denote the pullback of F along the projection XT → X . For every T -valued
point g : T →GT = T ×B G of G one has an isomorphism of T -schemes

ρg : XT
g×idXT−−−−−→GT ×T XT

σT−−→ XT , (t , x) 7−→ (t ,σT (g (t ), x)).

The condition “F is G-equivariant” is equivalent to the following condition: for every T -valued
point g ∈ GT (T ) as above there is an isomorphism ϑg : FT

∼→ ρ∗
g FT such that for every pair of

T -valued points g , h ∈GT (T ) one has a commutative diagram of isomorphisms

ρ∗
gρ

∗
hFT ρ∗

g FT

ρ∗
hg FT FT

⇐⇐

←→ρ∗gϑh

←→ϑhg

← →ϑg (6)

in QCohXT
.

Example 7. Let (X ,σ) be a G-scheme over a scheme B . Then the structure sheaf OX is G-
equivariant in a natural way. For a B-scheme T , set XT = T ×B X . Then the inverse of the natural
isomorphisms ρ∗

g OXT
∼→ ρ∗

gρg∗OXT
∼→OXT is a G-equivariant structure on OX .

Example 8. Let (X ,σ) be a G-scheme over a scheme B . Then the sheaf ΩX /B of relative differ-
entials is G-equivariant in a natural way. Indeed, for a B-scheme T , consider the natural isomor-
phisms αT : (ΩX /B )T

∼→ΩXT /T and `g : ρ∗
gΩXT /T

∼→ΩXT /T , where g ∈ GT (T ). Then the composi-
tion

ϑg : (ΩX /B )T
αT−−→ΩXT /T

`−1
g−−→ ρ∗

gΩXT /T
ρ∗gα−1

T−−−−→ ρ∗
g (ΩX /B )T

C. R. Mathématique — 2021, 359, n 3, 257-282
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defines an equivariant structure on ΩX /B .

Notation 9. For an object (F ,ϑ) ∈ QCohG
X , we will often somewhat sloppily omit the G-

equivariant structure “ϑ” from the notation. We will also write HomX instead of HomQCohX
or

HomD(QCohX ), and write g∗ instead of ρ∗
g .

Remark 10. If (F ,ϑF ), (F ′,ϑF ′ ) ∈ QCohG
X , the C-vector space

HomX (F ,F ′)

is naturally a G-representation. Indeed, for a morphism φ : F →F ′ in QCohX , one defines g ·φ
by means of the composition

F F ′

g∗F g∗F ′
←→ϑF ,g

← →g ·φ

← →g∗φ
← →ϑ−1

F ′ ,g (7)

exploiting the invertibility of ϑF ′,g . The structure of G-representation on HomX (F ,F ′) clearly
depends on the chosen equivariant structures ϑF and ϑF ′ .

Remark 11. It is immediate to see that, in QCohG
X , the morphisms are the G-invariant mor-

phisms between the underlying quasi-coherent sheaves. In symbols,

HomQCohG
X

((F ,ϑF ), (F ′,ϑF ′ )) = HomX (F ,F ′)G . (8)

Indeed, the diagram (5) becomes precisely

F F ′

g∗F g∗F ′

←→ϑF ,g

← →φ

←→ ϑF ′ ,g

←→g∗φ

when restricted to
{

g
}×X ∼= X . Again, in the right hand side of (8) the “G-invariant part” depends

on the G-structure on HomX (F ,F ′), which in turn is determined by the pair (ϑF ,ϑF ′ ).

The following result is classical, and is key to this paper. It is proved in [28, Ex. 12.4.6], but see
also [35, Exercise 9.H].

Proposition 12. Let G be a smooth group scheme, X a G-scheme. There is an equivalence

QCohG
X
∼= QCoh[X /G] .

Example 13. Let X = Speck, for a field k. Then QCohG
Speck

∼= QCohBkG , which in turn is equiva-
lent to the category Repk (G) of locally finite k-linear representations of G .

1.2. Forgetful functor

There is an exact functor Φ : D(QCohG
X ) → D(QCohX ) that forgets the equivariant structure. This

results in a commutative diagram

QCohG
X QCohX

D(QCohG
X ) D(QCohX )

←-→

← →Φ

←-→

←→Φ

C. R. Mathématique — 2021, 359, n 3, 257-282
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where the vertical arrows are the inclusions of the standard hearts. We write ΦX when we wish
to emphasise the scheme. More concretely, if p : X → [X /G] is the standard smooth atlas, we can
identify Φ as the composition

D(QCohG
X ) ∼−→ D(QCoh[X /G])

p∗
−→ D(QCohX ), (9)

where p∗ = Lp∗ is the pullback functor as defined in [34, §7] and the first equivalence comes from
Proposition 12.

Remark 14. The forgetful functorΦ reflects exactness: a sequence in QCohG
X that becomes exact

in QCohX was already exact in QCohG
X . We will not need this fact.

1.3. Geometric functors

Fix two noetherian G-schemes (X ,σX ) and (Y ,σY ). All morphims X → Y in this subsection
are assumed to be G-equivariant. Since X and Y are noetherian, pushforward preserves quasi-
coherence.

Let (F ,ϑ) and (F ′,ϑ′) be two objects of QCohG
X . Then there is a canonical lift

(F ⊗F ′,ϑ⊗ϑ′) ∈ QCohG
X

of the object F ⊗F ′ ∈ QCohX . This gives a bi-functor

QCohG
X ×QCohG

X
⊗−→ QCohG

X .

If f : X → Y is a morphism of G-schemes, there is a pullback functor

QCohG
Y

f ∗
−→ QCohG

X , (E ,ϑE ) 7−→ ( f ∗E , (idG × f )∗ϑE ).

By flat base change along p2,σY : G ×Y ⇒ Y (cf. Remark 3 for flatness of σY ), one constructs a
pushforward functor

QCohG
X

f∗−→ QCohG
Y , (F ,ϑF ) 7−→ ( f∗F , (idG × f )∗ϑF ),

such that ( f ∗, f∗) is an adjoint pair.
Finally, given (F ,ϑ) ∈ CohG

X and (F ′,ϑ′) ∈ QCohG
X , there is a canonical G-equivariant struc-

ture on the quasi-coherent sheaf HomX (F ,F ′),3 given by HomG×X (ϑ,ϑ′). More precisely, the
isomorphism

HomG×X (ϑ,ϑ′) : HomG×X (p∗
2 F , p∗

2 F ′) ∼−→ HomG×X (σ∗
X F ,σ∗

X F ′)

can be used to define the equivariant structure

p∗
2 HomX (F ,F ′) σ∗

X HomX (F ,F ′)

HomG×X (p∗
2 F , p∗

2 F ′) HomG×X (σ∗
X F ,σ∗

X F ′)

←→ ∼
← →

ϑHomX (F ,F ′)

← →HomG×X (ϑ,ϑ′)

← →∼

in the top row, where to obtain the vertical isomorphisms one exploits the flatness of p2 and of
σX , as well as the coherence of F , see [16, (6.7.6)]. This construction defines a bi-functor

CohG
X ×QCohG

X
HomX ( · ,· )−−−−−−−→ QCohG

X .

3Note that HomX (F ,F ′) is quasi-coherent because we assumed F is coherent.

C. R. Mathématique — 2021, 359, n 3, 257-282



264 Andrea T. Ricolfi

2. Equivariant derived functors and Grothendieck duality

This section contains the technical material needed to prove Theorems A and B. It can be skipped
at a first reading.

Throughout this section we fix an affine (connected) algebraic group G over C. In particular
G is smooth by Cartier’s theorem. Moreover, G is linear. We also assume (with the exception of
Section 2.2, which just records some general definitions) that all schemes are noetherian and
separated over C.

2.1. Ample families of equivariant line bundles

Given a G-scheme X , the following condition will be crucial:

X has an ample family of G-equivariant line bundles. (†)

Condition (†) means that there exists a family
{
Li

}
i∈I of G-equivariant line bundles such that,

for every object E ∈ QCohX , the evaluation map yields a surjective morphism⊕
i

⊕
n>0

H0(X ,E ⊗L ⊗n
i )⊗C (L ∨

i )⊗n � E .

Here the index set I is arbitrary, but since X is quasi-compact taking I to be finite yields an
equivalent definition.

Example 15. If X is a quasi-projective scheme with a linear G-action, then (†) holds. If X is
quasi-projective and there exists at least one G-equivariant line bundle on X , then X admits a
G-equivariant embedding in a smooth scheme.

Lemma 16. If X admits a G-equivariant immersion in a smooth separated C-scheme, then X
satisfies (†).

Proof. Let i : X ,→ A be a G-equivariant locally closed embedding, where A is a smooth separated
C-scheme. By [7, II.2.2.7.1], A has an ample family of line bundles

{
Li

}
i . By GIT [31] (but see also

the result [45, Thm. 1.6] of Sumihiro), every line bundle L on a normal scheme, such as A, has
a tensor power L ⊗s that is G-linearisable (this also uses smoothness of G). So A has an ample
family of G-equivariant line bundles. Since i is a quasi-affine morphism (and is G-equivariant),
pulling back this family along i yields an ample family of G-equivariant line bundles. �

Remark 17. By a result of Thomason [46], we have the implication

X satisfies (†) =⇒ [X /G] has the resolution property,

where the condition on the right means that every G-equivariant coherent OX -module is the
quotient of a G-equivariant locally free OX -module of finite type.

Remark 18. For a G-scheme X , Condition (†) is not equivalent to the resolution property for the
stack [X /G]. In [48, §9] an example is given of a projective variety X (a nodal cubic curve) acted
on by an algebraic group G (the torus Gm), such that X does not admit a family of G-equivariant
line bundles. However, the quotient stack [X /G] does have the resolution property [48, Prop. 9.1].

2.2. Quasi-coherent sheaves on quotient stacks

For the sake of completeness, and for future reference, we record here a few properties of
(quotient) stacks and their derived categories.

C. R. Mathématique — 2021, 359, n 3, 257-282
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2.2.1. Perfect complexes on schemes

Let X be an arbitrary scheme.

Definition 19 (cf. [47, Section 2]). A complex E ∈ D(X ) is called perfect (resp. strictly perfect) if
it is locally (resp. globally) quasi-isomorphic to a bounded complex of locally free OX -modules of
finite type. We let Perf X denote the triangulated category of perfect complexes on X .

Remark 20. As long as X is quasi-compact, quasi-separated and has an ample family of line
bundles, there is no difference between perfect and strictly perfect [47, Prop. 2.3.1(d)]. For G-
schemes satisfying condition (†), every perfect complex is then a bounded complex.

By [44, Tag 08DB], if X is quasi-compact and semi-separated (i.e. has affine diagonal), the
canonical functor D(QCohX ) → Dqc(X ) is an equivalence. The same holds true for any noetherian
scheme [44, Tag 09TN]. Here the decoration “qc” means that the cohomology sheaves of the
complexes lie in QCohX . Our schemes will be noetherian, so all statements usually made about
Dqc(X ) can, and will be rephrased here using D(QCohX ).

2.2.2. Separation and noetherianity for algebraic stacks

Let S be a scheme. Recall that a morphism of schemes X → S is quasi-separated if the diagonal
X → X ×S X is quasi-compact. On the other hand, an algebraic stack X → S is quasi-separated if
the diagonal X →X ×S X is quasi-compact and quasi-separated, see [35, Def. 8.2.12].

Let G → S be a smooth quasi-compact separated group scheme acting on a quasi-compact
quasi-separated S-scheme X → S. An algebraic stack of the form [X /G] → S has representable,
quasi-compact and separated diagonal [28, Ex. 4.6.1], therefore it is quasi-separated.

An algebraic stack is noetherian if it is quasi-compact, quasi-separated and admits a noether-
ian atlas. For instance, if X is a noetherian scheme acted on by a smooth affine algebraic group,
then [X /G] is a noetherian algebraic stack. Indeed, X → [X /G] is an atlas; we just established
quasi-separatedness, and quasi-compactness can be checked on an atlas [44, Tag 04YA].

2.2.3. Compact generation for derived categories

For an algebraic stack X , the inclusion QCohX ⊂ ModOX
of the abelian category of quasi-

coherent OX -modules on the lisse-étale site of X (cf. [35, Def. 9.1.6]) inside the abelian category
of all OX -modules induces a canonical functor

D(QCohX ) −→ Dqc(X ) ⊂ D(X ).

We now briefly recall the notion of compact generation. It will be essential in the proof of
equivariant Grothendieck duality (Theorem 41).

Definition 21 (cf. [32, Def. 1.7]). A triangulated category S with small coproducts is said to
be compactly generated if there is a set of objects S ′ ⊂ S such that for every s ∈ S ′ the functor
HomS (s,−) commutes with coproducts, and whenever y is an object of S such that HomS (s, y) =
0 for all s ∈S ′, then it follows that y = 0.

Proposition 22. Let X be a noetherian scheme over C, acted on by an affine algebraic group G
and satisfying (†). Set X = [X /G]. The derived category D(QCohX ) has small coproducts and is
compactly generated.

Proof. First of all, D(QCohX ) has small coproducts because QCohX is a Grothendieck abelian
category [44, Tag 06WU].

Next, X is quasi-separated and noetherian: this was established in Section 2.2.2. Since G is
affine, X has affine stabiliser groups at closed points. By [48, Prop. 1.3], a noetherian algebraic
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stack with affine stabiliser groups at closed points, and having the resolution property, has affine
diagonal. Therefore, by Remark 17, X has affine diagonal.

Since we work in characteristic 0 and X has an ample family
{
Li

}
of G-equivariant line

bundles, X is concentrated (see [19, Ex. 8.6], and [19, Def. 2.4] for the definition of concentrated),
thus it has the compact resolution property; therefore we can apply [19, Prop. 8.4] to conclude
that the family of line bundles

{
Li

}
(including their shifts), viewed as line bundles over X , form

a family of compact generators for Dqc(X ).
Summing up, X is a quasi-compact algebraic stack with affine diagonal and such that Dqc(X )

is compactly generated: by [17, Thm. 1.2] this implies that the canonical functor D(QCohX ) →
Dqc(X ) is an equivalence. Thus D(QCohX ) is compactly generated. �

Remark 23. See also [19, Rem. 8.7] for the statement (an example of application of [19, Prop. 8.4])
that for a quasi-compact concentrated algebraic stack X having affine diagonal and the resolu-
tion property, the category Dqc(X ) is compactly generated.

Corollary 24. The category D(QCohG
X ) is compactly generated.

Proof. This follows directly from Proposition 12. �

Remark 25. Combining Proposition 12 with the proof of Proposition 22 shows that if X is a
noetherian C-scheme acted on by an affine algebraic group G , and satisfying (†), then we have
equivalences

D(QCohG
X ) ∼−→ D(QCoh[X /G])

∼−→ Dqc([X /G]). (10)

The literature on derived functors for algebraic stacks usually refers to Dqc, but given the equiva-
lences (10) implied by our assumptions, we will state the results we need for D(QCohG ).

Example 26. Let G be a group scheme of finite type over a field k of characteristic 0. Then
Dqc(BkG) is compactly generated. Moreover, if G is affine, it is compactly generated by the
irreducible k-representations of G , see [18, Thm. A]. Let Repk (G) be the abelian category of k-
linear locally finite representations of G . Then by [17, Thm. 1.2] the natural functor D(Repk (G)) =
D(QCohBkG ) → Dqc(BkG) is an equivalence.

2.3. Equivariant derived functors

In this subsection G denotes an affine (connected) complex algebraic group. All G-schemes
are noetherian, separated over C, and satisfy (†). In particular all morphisms, which we always
assume to be G-equivariant, are quasi-compact and separated.

The following result lies at the foundations of the construction of derived versions of the
geometric functors recalled in Section 1.3.

Lemma 27 (cf. [49, Prop. 1.5.7 (a) and Prop. 1.5.6 (a)]). Let X be a G-scheme. The category QCohG
X

is a Grothendieck abelian category with enough injectives. Moreover, any complex of objects in
QCohG

X has a K-injective resolution and a K-flat resolution.

Remark 28. Serpé proved that, in fact, unbounded complexes on any Grothendieck category
admit K-injective resolutions [42, Thm. 3.13].

Remark 29. The resolutions mentioned in Lemma 27 (which are carefully defined in [49,
Def. 1.5.3(c), (d)]) are precisely the G-equivariant analogues of those used by Spaltenstein to con-
struct derived functors for unbounded derived categories in the non-equivariant case, see in par-
ticular Definitions 1.1 and 5.1 in [43].
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K-flat and K-injective resolutions allow one to define equivariant derived functors. As ex-
plained in [49, §1.5], K-flat resolutions are needed to construct derived tensor product and de-
rived pullback, whereas K-injective resolutions are used to construct derived pushforward.

Proposition 30 (cf. [49, Prop. 1.5.6, 1.5.7]). Let X be a G-scheme. There is a left derived functor

⊗L : D(QCohG
X )×D(QCohG

X ) −→ D(QCohG
X ).

If f : X → Y is a morphism of G-schemes, there is a left derived functor

L f ∗ : D(QCohG
Y ) −→ D(QCohG

X ),

and a right derived functor
R f∗ : D(QCohG

X ) −→ D(QCohG
Y ).

To construct the equivariant derived sheaf Hom functor, we proceed as follows. We consider
the quotient stack X = [X /G] and the category Perf(X ) ⊂ Dqc(X ) of perfect complexes. We also
let PerfG (X ) ⊂ D(QCohG

X ) be the image of Perf(X ) under the equivalence Dqc(X ) ∼→ D(QCohG
X ).

By [19, Lemma 4.3(2)], the bifunctor

RHomX ( · , · ) : D(X )×D(X )op −→ D(X ) (11)

calculated in OX -modules restricts to

RHomX ( · , · ) : Perf(X )×D(QCohX )op −→ D(QCohX ).

Let p : X → X denote the standard atlas. Exploiting the equivalences (10) and the factorisa-
tion (9), we obtain a diagram

Perf(X )×D(QCohX )op D(QCohX )

PerfG (X )×D(QCohG
X )op D(QCohG

X )

Perf(X )×D(QCohX )op D(QCohX )

←→ ∼

← →RHomX ( · ,· )

←

→

p∗×p∗

←→ ∼

←

→

p∗

←→ Φ×Φ

← →RHomX ( · ,· )

←→ Φ

← →RHomX ( · ,· )

where the bottom row is the ordinary derived sheaf Hom functor. The top square is used to define
the G-equivariant RHomX ( · , · ) in the middle row, so it commutes by construction, whereas the
commutativity of the whole diagram, which is equivalent to the statement

p∗ RHomX (E •,F •) = RHomX (p∗E •,p∗F •), (12)

is used to observe that the lower square is also commutative: this means that the G-equivariant
RHomX ( · , · ) commutes with the forgetful functor Φ.

We thank David Rydh for pointing out the following.

Remark 31. The “quasi-coherent” derived sheaf Hom functor

RHomqc
X

( · , · ) : Dqc(X )×Dqc(X )op −→ Dqc(X )

considered in [19, §1.2], defined by composing the restriction of (11) with the quasi-coherator
D(X ) → Dqc(X ), does not commute with pullback in general. However, (12) holds true precisely
because we restricted to perfect complexes in the first entry. In this case, if we take (E •,F •) ∈
Perf(X )×Dqc(X ), we have indeed

RHomX (E •,F •) = RHomqc
X

(E •,F •) = E •∨⊗L F •,

and (12) follows since duals of perfect complexes, which are dualisable, commute with arbitrary
pullback. See [19, Lem. 4.3] and the paragraph before it for more details.
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The G-equivariant derived functors listed above satisfy the usual compatibilities. Here are
some of them: given a morphism f : X → Y of G-schemes,

(1) L f ∗ is left adjoint to R f∗,
(2) R f∗ preserves cohomologically bounded complexes,
(3) L f ∗, R f∗, ⊗L and RHomX ( · , · ) commute with the forgetful functor Φ (cf. [49, §1.5.8]).
(4) The projection formula

E •⊗L R f∗F • = R f∗
(
L f ∗E •⊗LF •)

holds, for all F • ∈ D(QCohG
X ) and E • ∈ D(QCohG

Y ).

For us, the most important property is (3).

2.4. Equivariant Ext groups

For a G-scheme X with structure morphism π : X → SpecC, we write RΓX = Rπ∗. Since the G-
equivariant derived functors commute with the forgetful morphism, given (E •,F •) ∈ PerfG (X )×
D(QCohG

X ), the complex

RΓX RHomX (E •,F •) ∈ D(QCohG
pt) = D(RepC(G))

is a complex of G-representations with RHomX (ΦX (E •),ΦX (F •)) as underlying complex of
vector spaces. We will often omit ΦX from the notation.

Remark 32. The cohomology functors Hk : D(QCohG
pt) → QCohG

pt also commute with the for-
getful functor. In other words, for any object V • ∈ D(QCohG

pt), there is a natural structure of G-
representation on the vector spaces Hk (Φpt(V •)). Thus, given (E •,F •) ∈ PerfG (X )×D(QCohG

X ),
all Ext groups

Extk
X (E •,F •) ..= Hk (RHomX (ΦX (E •),ΦX (F •))) ∈ QCohpt (13)

have a natural structure of G-representations. Therefore the G-invariant part

Extk
X (E •,F •)G ⊂ Extk

X (E •,F •)

is well-defined.

We now describe the G-representation structure on (13) explicitly. We set k = 0, the general
case being obtained by replacing F • with F •[k].

Fix a pair (E •,F •) ∈ PerfG (X )×D(QCohG
X ) and a morphism α : E • → F • in D(QCohX ). For

simplicity, assume α is represented by a cochain map

· · · E i E i+1 · · ·

· · · F i F i+1 · · ·

←→ ←→di
E •

←→αi

←→

←→ αi+1

←→ ←→di
F• ←→

(14)

where all arrows are in the category QCohX . The sheaves E i (resp. F i ) carry a G-equivariant
structure ϑE i (resp. ϑF i ). We let g ∈G act on α= (αi )i∈Z by g ·α= (g ·αi )i∈Z, where the element
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g ·αi =ϑ−1
F i ,g

◦g∗αi ◦ϑE i ,g ∈ HomX (E i ,F i ) was defined via Diagram (7). For fixed g ∈G and i ∈Z,

the diagram

E i E i+1

g∗E i g∗E i+1

g∗F i g∗F i+1

F i F i+1

← →di
E •

←→ ϑE i ,g

←

→

g ·αi

←→ ϑE i+1,g

←

→

g ·αi+1

← →g∗di
E •

←→ g∗αi

←→ g∗αi+1

← →g∗di
F•

←→ ϑ−1
F i ,g

←→ ϑ−1
F i+1,g

← →di
F•

(15)

in QCohX illustrates the situation: since (E •,dE • ) and (F •,dF • ) are objects of D(QCohG
X ), the

morphisms di
E • and di

F • , as soon as we view them in QCohX , satisfy

di
E • = g ·di

E • =ϑ−1
E i+1,g

◦ g∗di
E • ◦ϑE i ,g

di
F • = g ·di

F • =ϑ−1
F i+1,g

◦ g∗di
F • ◦ϑF i ,g

respectively, for all g ∈ G (cf. Remark 11). Therefore the top and bottom squares commute. So
does the middle square, by the commutativity of (14). Therefore the outer square commutes, thus
defining the morphism g ·α ∈ HomX (E •,F •).

Remark 33. Let E • be an object of PerfG (X ). Then

idE • ∈ HomX (E •,E •)G ⊂ HomX (E •,E •).

This is clear by looking at the diagram (15) where all αi = idE i .

Lemma 34. The following statements hold.

(1) Fix F • ∈ PerfG (X ). A distinguished triangle E •
1 → E •

2 → E •
3 → E •

1 [1] in D(QCohG
X ) induces

a long exact sequence

· · · −→ Extk
X (F •,E •

1 ) −→ Extk
X (F •,E •

2 ) −→ Extk
X (E •

3 ,F •) −→ Extk+1
X (F •,E •

1 ) −→ ·· ·
of G-representations.

(2) Fix F • ∈ D(QCohG
X ). A distinguished triangle E •

1 → E •
2 → E •

3 → E •
1 [1] in PerfG (X ) induces

a long exact sequence

· · · −→ Extk
X (E •

3 ,F •) −→ Extk
X (E •

2 ,F •) −→ Extk
X (E •

1 ,F •) −→ Extk+1
X (E •

3 ,F •) −→ ·· ·
of G-representations.

Proof. To prove (1), apply the composition RΓX ◦RHomX (F •, · ) of equivariant derived functors,
and then cohomology H• : D(RepC(G)) → RepC(G), to the given distinguished triangle: exploiting
Remark 32, this yields the first sequence. To prove (2), use RHomX ( · ,F •). �

We will only need the following special case.

Corollary 35. The following statements hold.

(1) Fix F • ∈ PerfG (X ). A morphism j : E •
1 → E •

2 in D(QCohG
X ) induces a morphism of G-

representations

j∗ : HomX (F •,E •
1 ) −→ HomX (F •,E •

2 ), α 7−→ j ◦α.
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(2) Fix F ∈ D(QCohG
X ). A morphism i : E •

1 → E •
2 in PerfG (X ) induces a morphism of G-

representations

i∗ : HomX (E •
2 ,F •) −→ HomX (E •

1 ,F •), β 7−→β◦ i .

The following definition will be central in the next sections.

Definition 36. Fix (E •,F •) ∈ D(QCohG
X )×D(QCohG

X ). We say that an extension class

α ∈ Extk
X (E •,F •)

is G-equivariant if the corresponding morphism E • → F •[k] admits a lift to D(QCohG
X ), i.e. if it

lies in the image of the natural morphism HomD(QCohG
X )(E

•,F •[k]) → HomX (E •,F •[k]). Recall
that we omit Φ from the notation in the target Hom-set. We say that α is G-invariant if it belongs
to Extk

X (E •,F •)G .

2.4.1. The case of reductive groups

Recall from [31, App. A] that, over a field of characteristic 0, a linear algebraic group G is
reductive if and only if it is linearly reductive. This means that the functor

( · )G : QCohG
pt −→ QCohpt, V 7−→V G ,

taking a G-representation to its G-invariant part, is exact.
Reductivity has the following important property.

Lemma 37 (cf. [2, Lem. 2.2.8]). Let G be a reductive algebraic group acting on a complex
noetherian separated G-scheme X . Set X = [X /G] and fix k ∈ Z and two objects E •, F • ∈
D(QCohG

X ) = D(QCohX ). Then there are natural isomorphisms

HomX (E •,F •[k]) ∼−→ HomX (E •,F •[k])G .

The Hom-set on the left hand side is taken in D(QCohX ), the Hom-set on the right hand side
is taken in D(QCohX ).

Remark 38. If G is reductive, then by Lemma 37 an extension classα is G-equivariant if and only
if it is G-invariant.

2.5. Equivariant Grothendieck duality

Classically, one says that Grothendieck duality holds for a morphism of schemes f if the right
derived functor R f∗ has a right adjoint. Such adjoint is usually denoted f ×, or f ! if f is a proper
morphism. We will stick to the f ! notation.

The most general statement we are aware of is due to Neeman. Note that this is stated for Dqc
in [32], but (as we observed in Section 2.2.1) with our assumptions these categories are equivalent
to D(QCoh).

Theorem 39 (Grothendieck duality [32]). Let f : X → Y be a morphism of quasi-compact
separated schemes. Then R f∗ : D(QCohX ) → D(QCohY ) has a right adjoint f !. If f is a proper
morphism of noetherian separated schemes, the natural morphism

R f∗ RHomX (F •, f !E •) −→ RHomY (R f∗F •,E •) (16)

is an isomorphism in D(Y ) for all F • ∈ D(QCohX ) and E • ∈ D(QCohY ).

Proof. The first assertion is [32, Ex. 4.2]. The sheafified Grothendieck duality isomorphism (16)
is obtained in [32, §6]. A proof of (16) assuming f is a morphism essentially of finite type between
noetherian separated schemes can be found in [26, Eq. 1.6.1]. �
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We refer the reader to Neeman [32] and Lipman [30] for very informative discussions around
the history of Grothendieck duality, as well its more modern versions.

In this section we prove a G-equivariant version of Theorem 39. We follow Neeman’s strategy
entirely. See also [19, Thm. 4.14(1)] for a generalisation, proving the existence of a right adjoint of
Rh∗ : Dqc(X ) → Dqc(Y ) for h : X → Y an arbitrary concentrated morphism (cf. [19, Def. 2.4])
of algebraic stacks.

The main tool used by Neeman is the following version of Brown’s representability theorem.

Theorem 40 (Brown representability [32, Thm. 4.1]). Let S be a compactly generated triangu-
lated category, T any triangulated category. Let F : S → T be a triangulated functor respecting
coproducts. Then F has a right adjoint.

Theorem 41 (Equivariant Grothendieck duality). Let f : X → Y be a morphism of noetherian
separated G-schemes satisfying (†). Then R f∗ : D(QCohG

X ) → D(QCohG
Y ) has a right adjoint f !.

Proof. Recall that D(QCohG
X ) is compactly generated by Corollary 24. Set X = [X /G] and Y =

[Y /G]. The morphism f : X → Y induces a representable morphism of algebraic stacks

f : X −→Y ,

that by our assumptions on X and Y is quasi-compact and quasi-separated. In particular,
by [19, Lem. 2.5], f is a concentrated morphism. Then, by [19, Thm. 2.6(3)], the direct image
R f ∗ : Dqc(X ) → Dqc(Y ) preserves coproducts. Under the equivalences (10), the functor R f ∗
corresponds precisely to R f∗ : D(QCohG

X ) → D(QCohG
Y ). Thus the existence of f ! : D(QCohG

Y ) →
D(QCohG

X ) follows by Theorem 40. �

Lemma 42 (Sheafified Grothendieck duality). Let f : X → Y be a proper morphism of noetherian
separated G-schemes satisfying (†). Fix objects F • ∈ PerfG (X ) and E • ∈ D(QCohG

Y ). Then there is a
natural isomorphism

R f∗ RHomX (F •, f !E •) ∼−→ RHomY (R f∗F •,E •) (17)

in D(QCohG
Y ).

Proof. This is a special case of [33, Lem. 5.3]. �

One can ask whether the right adjoint f ! : D(QCohG
Y ) → D(QCohG

X ) commutes with the forget-
ful functor. This question can be restated as follows. Given the 2-cartesian diagram

X Y

X Y

�

← →f

←→pX

←→ pY

← →f̄

we ask whether the natural transformation η : p∗
X f ! → f !p∗

Y an isomorphism of functors. This is
answered in full generality in [33, Lem. 5.20]. For the purpose of this paper, we content ourselves
with a special case of that result: the answer is positive, i.e. ηE • is an isomorphism, when f is
proper and E • ∈ D+

qc(Y ) is bounded below. Under these assumptions one has

ΦX ( f !(E •)) = f !(ΦY (E •)) (18)

in D(QCohX ), where f ! in the left hand side (resp. in the right hand side) is the G-equivariant right
adjoint (resp. the ordinary right adjoint) of R f∗.

Remark 43. In a little more detail, properness of f implies properness of f (reason: f is separated
by [44, Tag 04YV], universally closed by [44, Tag 0CL3] and of finite type by [44, Tag 06FR]); since
X and Y are noetherian and f is representable, it follows that f is quasi-proper, which together
with E • ∈ D+

qc(Y ) is one of the conditions in [33, Lem. 5.20] ensuring that ηE • is an isomorphism.
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Note that restricting attention to bounded below complexes does not affect the applications
we have in mind, which involve perfect complexes: we already observed in Section 2.2.1 that by
assumption (†) perfect complexes are bounded.

Corollary 44. Let f : X → Y be a proper morphism of noetherian separated G-schemes satisfy-
ing (†). Given F • ∈ PerfG (X ) and E • ∈ D+

qc(Y ) ⊂ D(QCohG
Y ), for all k ∈ Z there is a canonical

isomorphism of G-representations

Extk
X (F •, f !E •) ∼−→ Extk

Y (R f∗F •,E •).

Taking G-invariant parts, it restricts to an isomorphism of C-vector spaces

Extk
X (F •, f !E •)G ∼−→ Extk

Y (R f∗F •,E •)G .

Proof. It is enough to apply Hk ◦RΓY to the isomorphism (17) and to observe that all functors
involved commute with the forgetful functor. For f !, we exploit (18). �

Example 45. Keep the assumptions of Corollary 44. If G is reductive, by Lemma 37 we have a
commutative diagram of isomorphisms

Extk
X (F •, f !E •)G Extk

Y (R f∗F •,E •)G

HomD(QCohG
X )(F

•, f !E •[k]) HomD(QCohG
Y )(R f∗F •,E •[k])

← →∼

← →∼

←→∼

← →∼
where the bottom map is the adjunction isomorphism obtained via Theorem 41.

3. Equivariance of the truncated Atiyah class

3.1. Truncated Atiyah classes after Huybrechts–Thomas

In this section all schemes are noetherian and separated over C.

3.1.1. The relative truncated cotangent complex

The goal of this subsection is to revisit the classical fact that the truncated cotangent complex,
though defined through the choice of a smooth embedding, does not depend on this choice.
We review this from [22, §2] since the argument reveals that the same feature occurs in the
equivariant setting.

Let B be a scheme. Let X ⊂ A1 be a closed embedding inside a smooth B-scheme A1. Let
J1 ⊂OA1 be the ideal sheaf of the embedding. Consider the exterior derivative

d: J1 ,−→OA1 −→ΩA1/B

and restrict it to X to obtain the (relative) truncated cotangent complex

LX /B = [
J1/J 2

1 −→ΩA1/B |X
] ∈ D[−1,0](QCohX ). (19)

Suppose X admits an embedding in another smooth B-scheme A2. Then the composition X ,→
A1×B A2 → A1, where X ,→ A1×B A2 is the diagonal embedding defined by an ideal J12 ⊂OA1×B A2 ,
induces a quasi-isomorphism of two-term complexes

J1/J 2
1 ΩA1/B |X

J12/J 2
12 ΩA1/B |X ⊕ΩA2/B |X

ΩA2/B |X ΩA2/B |X

← →

←→ ←→

←→

←→ ←→

⇐ ⇐

(20)
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showing that replacing X ⊂ A1 with X ⊂ A1×B A2 does not change the isomorphism class of LX /B

in the derived category.
We recalled this argument in order to make the following observation. Suppose ιi : X ,→ Ai is

a G-equivariant closed embedding, for i = 1,2. Then

0 −→ Ji −→OAi −→ ιi∗OX −→ 0

is a G-equivariant short exact sequence, and similarly for ι12 : X ,→ A1 ×B A2. Since the exterior
derivative d: OAi →ΩAi /B is also G-equivariant, the whole diagram (20) can be canonically lifted
to QCohG

X . This yields a well-defined element

LX /B ∈ D[−1,0](QCohG
X ), (21)

whose isomorphism class again does not depend on the choice of equivariant embedding. The
equivariant truncated cotangent complex is also discussed by Illusie in [25, Ch. VII, §2.2.5].

Let L•
S/T denote the full (possibly G-equivariant) cotangent complex of a (possibly G-

equivariant) morphism of schemes (or algebraic stacks) S → T .

Lemma 46. Let f : X → Y and g : Y → Z be G-equivariant morphisms. Then there is a sequence
of morphisms

τ≥−1L f ∗L•
Y /Z −→ LX /Z −→ LX /Y

in D[−1,0](QCohG
X ).

Proof. Let us shorten X = [X /G], Y = [Y /G] and Z = [Z /G]. The given G-equivariant mor-
phisms induce 2-cartesian diagrams of algebraic stacks

X Y Z

X Y Z

�

←→ pX

← →f

�

←→ pY

← →g

←→ pZ

← →f̄ ← →ḡ

where the morphisms f and g are quasi-compact, quasi-separated and of Deligne–Mumford
type [44, Tag 04YW]. Hence their cotangent complexes live in D≤0(QCoh). By [34, Thm. 8.1], there
is an exact triangle

L f ∗L•
Y /Z −→ L•

X /Z −→ L•
X /Y (22)

in D(QCohX ), where L• denotes the full cotangent complex. If we applied the pullback functor

p∗
X : D(QCohX ) ∼−→ D(QCohG

X )
Φ−→ D(QCohX )

to the triangle (22), we would get the usual triangle of full cotangent complexes

L f ∗L•
Y /Z −→ L•

X /Z −→ L•
X /Y (23)

in D≤0(QCohX ). Instead, we get a lift to D(QCohG
X ) of the triangle (23) by applying the exact equiv-

alence D(QCohX ) ∼→ D(QCohG
X ) to (22). Applying the truncation functor τ≥−1 on D(QCohG

X )
yields the desired sequence of morphisms

τ≥−1L f ∗L•
Y /Z −→ LX /Z −→ LX /Y

in D[−1,0](QCohG
X ), as required. �
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3.1.2. Absolute setting

Let X ,→ A be a closed immersion of a scheme X inside a smooth C-scheme A. Let J ⊂OA be
the corresponding sheaf of ideals. The (absolute) truncated cotangent complex is the two term
complex

LX = [
J/J 2 −→ΩA |X

] ∈ D[−1,0](QCohX ). (24)

Let IA ⊂OA×A and IX ⊂OX×X be the ideal sheaves of the diagonal embeddings

A
i∆A
,−−→ A× A, X

i∆X
,−−→ X ×X ,

respectively. Huybrechts–Thomas [22, §2] show how to construct a canonical morphism

αX : O∆X −→ i∆X ∗LX [1]. (25)

It is represented in degrees [−2,0] by the morphism of complexes

i∆X ∗(J/J 2) IA
∣∣

X×X OX×X

i∆X ∗(J/J 2) IA/I 2
A

∣∣
X×X

⇐⇐

← →
←→

← →

←→
(26)

where the quasi-isomorphism between the top complex and O∆X is proved as a consequence
of [22, Lem. 2.2]. The extension class

αX ∈ Ext1
X×X (O∆X , i∆X ∗LX )

corresponding to (25) is called the truncated universal Atiyah class. It does not depend on the
choice of embedding X ⊂ A.

The main observation in [22], at this point, is that the map (25) can be seen as a map of Fourier–
Mukai kernels. In particular, for a perfect complex E on X , one can view Rπ2∗(π∗

1 E ⊗αX ) as a
canonical morphism

AtE : E −→ E ⊗LX [1]

in D(QCohX ), whereπi : X ×X → X are the projections. This is, by definition, the truncated Atiyah
class of E introduced in [22, Def. 2.6]. It can of course be seen as an element

AtE ∈ Ext1
X (E ,E ⊗LX ). (27)

Under the canonical morphism LX → h0(LX ) =ΩX , the extension AtE projects onto the classical
Atiyah class in Ext1

X (E ,E ⊗ΩX ).

3.1.3. Relative setting

We consider the following setup, which we recall verbatim from [22, §2] and [23].
Let B be a scheme, X → B a B-scheme equipped with a closed immersion X ,→ A with ideal

J ⊂OA . We assume we have a commutative diagram

X AB A

B B̃

←- →←

→ �

←- →

←→ ←→

←- →
(28)

C. R. Mathématique — 2021, 359, n 3, 257-282



Andrea T. Ricolfi 275

where B̃ and A → B̃ are smooth and the square is cartesian. In particular, both A and AB → B
are smooth. Let JB ⊂ OAB be the ideal sheaf of X ⊂ AB . Then there is a natural morphism of
complexes

J/J 2 JB /J 2
B

ΩA
∣∣

X ΩA/B̃

∣∣
X ΩAB /B

∣∣
X

←→

←→ ←→

←→ ⇐⇐
(29)

inducing a morphism
j : LX −→ LX /B .

The relative truncated Atiyah class of a perfect complex E ∈ Perf X is, by definition, the composi-
tion

AtE/B : E
AtE−−→ E ⊗LX [1]

idE ⊗ j [1]−−−−−−→ E ⊗LX /B [1].

It corresponds to the element
AtE/B ∈ Ext1

X (E ,E ⊗LX /B )

obtained as the image of AtE under the map (idE ⊗ j [1])∗ : Ext1
X (E ,E ⊗LX ) → Ext1

X (E ,E ⊗LX /B ).

3.2. Adding in the group action

In this section we prove Theorem A (which builds on the situation of Section 3.1.2), along with its
relative analogue (which builds on the situation of Section 3.1.3).

3.2.1. Absolute setting

We first go back to the absolute setting of Section 3.1.2.
Let G be an affine algebraic group, and let

X ⊂ A

be a G-equivariant embedding of noetherian separated schemes, where A is smooth. Recall
(cf. Example 15) that this situation is achieved if X is quasi-projective and has a G-equivariant
line bundle. Under these assumptions, we have seen that the truncated cotangent complex is
canonically G-equivariant, i.e. there is a canonical lift

LX ∈ D[−1,0](QCohG
X )

of the complex (24).
Let i∆X : X ,→ X × X be the diagonal embedding. The G-action on X determines a G-

equivariant structure on the structure sheaf OX (Example 7), and on the short exact sequence

IX ,−→OX×X �O∆X = i∆X ∗OX .

Lemma 47. The morphism
αX : O∆X −→ i∆X ∗LX [1]

is naturally G-equivariant.

Proof. Since X ⊂ A is a G-equivariant embedding, the diagram of closed immersions

X A

X ×X A× A

←-→i∆X

←- →
←-→ i∆A

←- →
along with its associated ideal sheaf short exact sequences, are also G-equivariant in a natural
way. Therefore Diagram (26), which is built out of these equivariant short exact sequences
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through the G-equivariant geometric functors (cf. Section 1.3), inherits a G-equivariant structure.
But Diagram (26) represents precisely αX . The claim follows. �

We finally have all the tools to complete the proof of Theorem A.

Theorem 48. Let G be a complex affine algebraic group acting on a separated noetherian C-
scheme X admitting a G-equivariant embedding in a smooth G-scheme. Fix a perfect complex
E ∈ Perf X . Then every lift of E to D(QCohG

X ) makes AtE canonically G-equivariant.

Recall (cf. Definition 36) that by “AtE is G-equivariant” we mean that the corresponding
morphism E → E ⊗LX [1] admits a lift to D(QCohG

X ).

Proof. Endow X × X with the diagonal action. Then the projections πi : X × X → X are G-
equivariant and both X and X × X satisfy Condition (†) by Lemma 16. Since αX is G-equivariant
by Lemma 47, using equivariant pushforward Rπ2∗, pullback π∗

1 and tensor product ⊗ (cf. Sec-
tion 2.3), we deduce that the morphism

Rπ2∗(π∗
1 E⊗αX ) : E −→ E ⊗LX [1]

is canonically lifted to D(QCohG
X ), which proves the result. �

3.2.2. Relative setting

Suppose we are in the situation depicted in Diagram (28), and assume X ,→ AB ,→ A are G-
equivariant embeddings. Then we obtain the following consequence of Theorem 48.

Corollary 49. The relative truncated Atiyah class AtE/B is G-equivariant.

Proof. The assumption that X ,→ AB ,→ A are G-equivariant implies that the morphism j : LX →
LX /B , induced by Diagram (29), is G-equivariant. Therefore

AtE/B : E −→ E ⊗LX [1]
idE ⊗ j [1]−−−−−−→ E ⊗LX /B [1]

lives in D(QCohG
X ) entirely. �

Remark 50. By Corollary 35, the morphism AtE/B can be seen as an element of

Ext1(E ,E ⊗LX /B )G ⊂ Ext1(E ,E ⊗LX /B ).

Indeed, since both AtE and idE ⊗ j [1] are morphisms in D(QCohG
X ), the composition

HomX (E ,E)
AtE∗−−−→ HomX (E ,E ⊗LX [1])

(idE ⊗ j [1])∗−−−−−−−−→ HomX (E ,E ⊗LX /B [1])

is a morphism of G-representations, and as such it preserves G-invariant parts. Therefore idE ∈
HomX (E ,E)G gets sent to AtE/B ∈ Ext1(E ,E ⊗LX /B )G .

4. Application to moduli spaces of perfect complexes

In this section we shall prove Theorem B, whose statement we recall below (Theorem 53) for the
reader’s convenience.
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4.1. The moduli space of perfect complexes

Fix an affine algebraic group G = Spec A, for A a (noetherian) unique factorisation domain
(e.g. G could be a torus), and fix a noetherian separated C-scheme B carrying the trivial G-
action p2 : G ×B → B . Let f : Y → B be a smooth (connected) projective G-invariant morphism
of relative dimension d , where the G-action on Y is denoted σY : G ×Y → Y . By assumption, G
preserves the fibres of f .

As in [22, §4.1], let M → B be a relative fine separated moduli space of simple perfect
complexes of rank r 6= 0 on the fibres of f , with fixed determinant L ∈ PicY and fixed numerical
invariants. Then M is an algebraic space, locally complete as a moduli space, and there is a
universal perfect complex

E ∈ Perf(Y ×B M).

Denote by ιb : Yb ,→ Y the inclusion of a fibre of f . If a point m ∈ M sits over b ∈ B , let im : Yb
∼→

Yb × {m} ,→ Y ×B M denote the corresponding inclusion.
For a scheme S → B , the universal property of the pair (M ,E) translates into a bijection

between

• morphisms S → M over B , and
• equivalence classes of complexes F ∈ Perf(Y ×B S) such that for all s ∈ S (say, sitting over

b ∈ B) the derived restriction F |Yb is isomorphic to Li∗mE for some m ∈ M (sitting over
b), and such that detF = π∗

S L ′ ⊗π∗
Y L for some L ′ ∈ PicS (where πS and πY are the

projections from Y ×B S).

Two complexes F and F ′ in Perf(Y ×B S) are considered equivalent if there exists a line bundle
H ∈ PicS such that F = F ′⊗π∗

S H . The correspondence assigns to a B-morphism h : S → M the
equivalence class of the perfect complex (idY ×h)∗E ∈ Perf(Y ×B S).

4.2. Equivariance of the universal complex

From now on we set X = Y ×B M . We will define a suitable G-action on X , with respect to which
the universal complex is equivariant. Before doing so, we state a fact that we will need during the
proof.

Fact 51. A theorem of Rosenlicht [41, Thm. 2], whose proof is sketched in [10, Rem. 7.1], says that
if Z and Z ′ are irreducible varieties over an algebraically closed field, the natural homomorphism
O(Z )×⊗O(Z ′)× →O(Z ×Z ′)× is surjective. In fact, [10, Rem. 7.1] shows more: one can write every
function α ∈O(Z ×Z ′)× as α=β�β′ for β ∈O(Z )× and β′ ∈O(Z ′)×.

Proposition 52. The universal complex E ∈ Perf X is naturally G-equivariant.

Proof. First of all, we lift the G-action σY : G ×Y → Y to a G-action on M . Pulling back E along

σY × idM : G ×Y ×B M −→ Y ×B M

gives a family of perfect complexes parameterised by G ×M . By the universal property of (M ,E),
this induces a B-morphism

σM : G ×M −→ M ,

which is a G-action on M . (Note that, since G is connected and affine, the determinant does not
change under the action.) We have

(idY ×σM )∗E ∼= (σY × idM )∗E ⊗π∗
G ,M H

for some H ∈ Pic(G×M), where πG ,M : G×Y ×B M →G×M is the projection. We claim that H is
the trivial line bundle. Consider the projectionπ2 : G×M → M . Since G = Spec A where A is a UFD
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(by our assumption at the beginning of this section), by [20, Ch. II, Prop. 6.2] we deduce that the
class group Cl(G) is trivial; but by [20, Ch. II, Cor. 6.16] we have an isomorphism Cl(G) ∼= Pic(G),
so we deduce that PicG = 0, thus H = π∗

2 H ′ for some H ′ ∈ Pic M . However, H |{g}×M is trivial
for all g ∈G , in particular for g = e, where e ∈G is the group identity. Thus H ′ is trivial and hence
so is H . Then the previous isomorphism becomes

(idY ×σM )∗E ∼= (σY × idM )∗E .

Next, we have to make E equivariant. We consider the G-action

τ : G ×Y ×B M −→ Y ×B M , (g , y,m) 7−→ (σY (g , y),σM (g−1,m))

on X = Y ×B M . The pullback τ∗E corresponds to a B-morphism φτ : G ×M → M . In fact, φτ is
the second projection. Indeed,

τ∗E |{g}×Yb×{m} = Li∗n E ,

where n = σM (g ,σM (g−1,m)) = σM (e,m) = m. Thus τ∗E |{g}×Yb×{m} = Li∗mE , and we obtain an
isomorphism τ∗E ∼= (idY ×φτ)∗E ⊗π∗

G ,M H for some H ∈ Pic(G × M). For the same reason as
before, H is trivial. Therefore, since φτ is the projection, we obtain an isomorphism

ϑ : p∗
2 E ∼−→ τ∗E (30)

of perfect complexes on G ×X , where p2 = idY ×φτ : G ×X → X is the projection.
Finally, we need to verify that ϑ satisfies the cocycle condition. We follow [27, Prop. 4.4], but

we have to adapt the argument because the universal complex E is not necessarily simple. By [27,
Prop. 2.4], it is enough to check the cocycle condition (in the form of Remark 6) on closed points
of G . Let us normalise ϑ, if necessary, to achieve ϑe = idE . We need to show that the function

F : G ×G −→ AutE , (g ,h) 7−→ϑ−1
hg ◦ρ∗

gϑh ◦ϑg

is the constant 1 ∈C∗ ⊂ AutE where, as in Section 1.1, ρg denotes the composition

X ∼−→ {
g
}×X ,−→G ×X

τ−→ X .

We proceed as follows. Fix a closed point m ∈ M , sitting over b ∈ B . Set Em = Li∗mE , a perfect
complex on Yb

∼→ Yb × {m} ,→ X . Consider the commutative diagram

Yb × {m}
{

g
}×Yb × {m} G × (Yb × {m}) Yb × {m}

X
{

g
}×X G ×X X

←→∼
←-→ im

←-→ g×im

←- →
←-→ idG ×im

σY ,m

p2,m

←-→ im

← →∼ ←- → τ

p2

(31)

where σY ,m is the restriction of the action σY to the fibre Yb ⊂ Y , identified with Yb × {m}.
Restricting the isomorphismϑ in (30) to the slice G×(Yb×{m}) ⊂G×X we obtain an isomorphism

ϑ(m) =ϑ∣∣
G×Yb×{m} : p∗

2,mEm
∼−→ σ∗

Y ,mEm ,

and restricting ϑ(m) further to Yb × {m} ∼→ {
g
}×Yb × {m} we obtain

ϑg (m) : Em
∼−→ ρg (m)∗Em ,

where ρg (m) is, as ever, the composition

ρg (m) : Yb × {m} ∼−→ {
g
}×Yb × {m} ,−→G ×Yb × {m}

σY ,m−−−→ Yb × {m} .
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Now, for g and h varying in G , we consider the diagrams

ρg (m)∗ρh(m)∗Em ρg (m)∗Em

ρhg (m)∗Em Em

⇐⇐

←→ρg (m)∗ϑh (m)

←→ ϑhg (m)

← →ϑg (m)

and we ask whether these commute. As before, we translate this condition as follows. We consider
the function

Fm : G ×G −→ AutEm =C∗, (g ,h) 7−→ϑhg (m)−1 ◦ρg (m)∗ϑh(m)◦ϑg (m).

Thanks to the fact that Em is simple, which implies AutEm = C∗, the function Fm can be seen
as a regular nowhere vanishing function in O(G ×G)×. Thus by Fact 51 (applied to Z = Z ′ = G ,
which is irreducible since it is smooth and connected) we can write Fm(g ,h) = F1,m(g )·F2,m(h) for
Fi ,m ∈O(G)×. Since Fm(g ,1) = 1 = Fm(1,h) for all closed points g , h ∈G (we have used ρe (m) = id
as well as the normalisation ϑe (m) = idEm ), it follows that Fm is constantly equal to 1 ∈ C∗. To
finish the proof, it is enough to observe that by Diagram (31) we have ϑg (m) = i∗mϑg , in particular
we have a commutative diagram

G ×G AutE

AutEm

←→F

←

→1≡Fm

←→ i∗m

and since i∗m is an isomorphism on C× ⊂ AutE we conclude that F ≡ 1, as required. �

4.3. The Atiyah class of the universal complex

From now on, we endow E ∈ Perf X with the G-equivariant structure produced in (30). We endow
M with the G-action g ·m =σM (g−1,m), so that the projection πM : X → M is G-equivariant. We
also assume that M admits a G-equivariant embedding inside a smooth scheme.4 By Lemma 16
it follows that M (and hence X , by [47, Ex. 2.1.2(h)]) satisfy (†). Finally, notice that since the
projection πM : X → M is a proper (in fact, smooth and projective) morphism of G-schemes
satisfying condition (†), equivariant Grothendieck duality applies to πM .

Our goal is to prove the following result, which is Theorem B from the Introduction.

Theorem 53. Let M → B be as in Section 4.1, and assume G is reductive. Then the relative
obstruction theory on M → B is naturally G-equivariant.

We recalled in the Introduction how the relative obstruction theory is obtained via the Atiyah
class of the universal complex. We review this below, directly in the equivariant setting.

The complex E has a well-defined (absolute) truncated Atiyah class (27)

AtE ∈ Ext1
X (E ,E ⊗LX ),

and our first task is now to prove its equivariance. The proof of Theorem 53 will follow almost
immediately by equivariant Grothendieck duality. In fact, the equivariance of the Atiyah class is
now an easy corollary of Proposition 52 and the main result of the paper.

Corollary 54. The Atiyah class AtE is naturally G-equivariant.

Proof. Follows by combining Proposition 52 with Theorem 48. �

4Recall from Example 15 that this is easily achieved in many practical applications, where the moduli space is actually
quasi-projective. However, this assumption can be removed, just as in [22, §4.5]. We leave the details to the reader.
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The G-equivariant maps πY : X → Y and Y → SpecC induce a morphism j : LX → LX /Y in
D(QCohG

X ) by Lemma 46. Composing AtE with idE ⊗ j [1] gives the relative Atiyah class

AtE/Y : E −→ E ⊗LX [1] −→ E ⊗LX /Y [1].

Therefore Corollary 54 immediately implies the following.

Corollary 55. The relative Atiyah class AtE/Y is naturally G-equivariant.

By taking the image of idE ∈ HomX (E ,E)G under the composition (idE ⊗ j [1])∗ ◦AtE∗ we can
view the relative truncated Atiyah class as an element

AtE/Y ∈ Ext1
X (E ,E ⊗LX /Y )G = Ext1

X (E ,E ⊗π∗
MLM/B )G ,

where we have observed that LX /Y =π∗
MLM/B by [44, Tag 09DJ].

4.4. Proof of Theorem B

From now on, we assume G to be reductive (cf. Section 2.4.1). We shall exploit the splitting

RHomX (E ,E) =OX ⊕RHomX (E ,E)0, (32)

which we wish to prove to be G-equivariant. Recall (see e.g. [21, §10.1] for more details
on this construction) how (32) is obtained in the non-equivariant setup: the trace map
tr : RHomX (E ,E) → OX splits the identity homomorphism idE : OX → RHomX (E ,E), and the
composition tr◦ idE is multiplication by the rank r (which we assumed nonzero in Section 4.1).
We now show that the induced distinguished triangle

RHomX (E ,E)0 −→ RHomX (E ,E)
tr−→OX , (33)

defining the traceless RHom, is naturally lifted to D(QCohG
X ).

Consider the element

idE ∈ HomX (E ,E) = HomX (OX ,RHomX (E ,E)).

By Remark 33 and Lemma 37, we know that

idE ∈ HomX (OX ,RHomX (E ,E))G ∼= HomD(QCohG
X )(OX ,RHomX (E ,E)).

Then take F • =OX and i = idE in Corollary 35 (2) to observe that

id∗
E : HomX (RHomX (E ,E),OX ) −→ HomX (OX ,OX )

is G-equivariant. In particular, it preserves the G-invariant parts. Since the trace map tr ∈
HomX (RHomX (E ,E),OX ) gets sent to r · idOX

, which is G-invariant in virtue of Remark 33, it
follows that tr must be G-invariant, too. In other words,

tr ∈ HomX (RHomX (E ,E),OX )G ∼= HomD(QCohG
X )(RHomX (E ,E),OX ).

We can then take the shifted cone of tr in D(QCohG
X ) to obtain a distinguished triangle

RHomX (E ,E)0 −→ RHomX (E ,E)
tr−→OX

in PerfG (X ) ⊂ D(QCohG
X ), lifting (33).

We have proved that the splitting (32) is G-equivariant. This in particular implies that the
projection

q : Ext1
X (E ,E ⊗π∗

MLM/B ) −→ Ext1
X (RHomX (E ,E)0,π∗

MLM/B )

from the full Ext group containing the element AtE/Y , is a morphism of G-representations, in
particular it preserves G-invariant parts. Therefore, AtE/Y maps to an element

q(AtE/Y ) ∈ Ext1
X (RHomX (E ,E)0,π∗

MLM/B )G .
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Note that the dualising line bundle ωπM = π∗
Y ωY /B is naturally G-equivariant. By equivariant

Grothendieck duality along the proper morphism πM (Corollary 44), the latter group is canon-
ically isomorphic to

Ext1
X (RHomX (E ,E)0 ⊗ωπM [d ],π∗

MLM/B ⊗ωπM [d ])G

= Ext1−d
X (RHomX (E ,E)0 ⊗ωπM ,π!

MLM/B )G

∼= Ext1−d
M (RπM∗(RHomX (E ,E)0 ⊗ωπM ),LM/B )G

= HomM (E,LM/B )G

∼= HomD(QCohG
M )(E,LM/B )

where d is the relative dimension of Y → B and we have set

E= RπM∗(RHomX (E ,E)0 ⊗ωπM )[d −1].

We have also used again that G is reductive for the last isomorphism. The morphism φ ∈
HomM (E,LM/B ) determined as the image of the relative truncated Atiyah class AtE/Y is a relative
obstruction theory on M → B by [22, Thm. 4.1]. Therefore we have shown its equivariance in the
sense of Definition 1.

The proof of Theorem B is complete.

Example 56. Let Y be a smooth complex projective toric 3-fold. Let G = G3
m ⊂ Y be the open

torus. The above result confirms the G-equivariance of the (perfect) obstruction theory on the
following classical moduli spaces:

(1) the Hilbert scheme of points Hilbn Y ,
(2) the moduli space Im(Y ,β) of ideal sheaves I with chI = (1,0,−β,−m),
(3) the moduli space Pm(Y ,β) of stable pairs (F , s) with χ(F ) = m and [F ] =β,
(4) higher rank analogues of (2) and (3),
(5) the Quot scheme QuotY (F,n) of length n quotients of a G-equivariant exceptional locally

free sheaf F , as in [40]. This will be exploited in [12].
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