Protein kinases (PKs) have been recognized as central nervous system (CNS)‐disease-relevant targets due to their master regulatory role in different signal transduction cascades in the neuroscience space. Among them, GSK‐3β, FYN, and DYRK1A play a crucial role in the neurodegeneration context, and the deregulation of all three PKs has been linked to different CNS disorders with unmet medical needs, including Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal lobar degeneration (FTLD), and several neuromuscular disorders. The multifactorial nature of these diseases, along with the failure of many advanced CNS clinical trials, and the lengthy approval process of a novel CNS drug have strongly limited the CNS drug discovery. However, in the near‐decade from 2010 to 2020, several computer‐assisted drug design strategies have been combined with synthetic efforts to develop potent and selective GSK‐3β, FYN, and DYRK1A inhibitors as disease‐modifying agents. In this review, we described both structural and functional aspects of GSK‐3β, FYN, and DYRK1A and their involvement and crosstalk in different CNS pathological signaling pathways. Moreover, we outlined attractive medicinal chemistry approaches including multi‐target drug design strategies applied to overcome some limitations of known PKs inhibitors and discover improved modulators with suitable blood–brain barrier (BBB) permeability and drug‐like properties.
Demuro S., Di Martino R.M.C., Ortega J.A., Cavalli A. (2021). Gsk‐3β, fyn, and dyrk1a: Master regulators in neurodegenerative pathways. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 22(16), N/A-N/A [10.3390/ijms22169098].
Gsk‐3β, fyn, and dyrk1a: Master regulators in neurodegenerative pathways
Demuro S.;Di Martino R. M. C.;Cavalli A.
2021
Abstract
Protein kinases (PKs) have been recognized as central nervous system (CNS)‐disease-relevant targets due to their master regulatory role in different signal transduction cascades in the neuroscience space. Among them, GSK‐3β, FYN, and DYRK1A play a crucial role in the neurodegeneration context, and the deregulation of all three PKs has been linked to different CNS disorders with unmet medical needs, including Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal lobar degeneration (FTLD), and several neuromuscular disorders. The multifactorial nature of these diseases, along with the failure of many advanced CNS clinical trials, and the lengthy approval process of a novel CNS drug have strongly limited the CNS drug discovery. However, in the near‐decade from 2010 to 2020, several computer‐assisted drug design strategies have been combined with synthetic efforts to develop potent and selective GSK‐3β, FYN, and DYRK1A inhibitors as disease‐modifying agents. In this review, we described both structural and functional aspects of GSK‐3β, FYN, and DYRK1A and their involvement and crosstalk in different CNS pathological signaling pathways. Moreover, we outlined attractive medicinal chemistry approaches including multi‐target drug design strategies applied to overcome some limitations of known PKs inhibitors and discover improved modulators with suitable blood–brain barrier (BBB) permeability and drug‐like properties.File | Dimensione | Formato | |
---|---|---|---|
Demuroetal2021.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
10.06 MB
Formato
Adobe PDF
|
10.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.