This paper deals with a distributed Mixed-Integer Linear Programming (MILP) set-up arising in several control applications. Agents of a network aim to minimize the sum of local linear cost functions subject to both individual constraints and a linear coupling constraint involving all the decision variables. A key, challenging feature of the considered set-up is that some components of the decision variables must assume integer values. The addressed MILPs are NP-hard, nonconvex and large-scale. Moreover, several additional challenges arise in a distributed framework due to the coupling constraint, so that feasible solutions with guaranteed suboptimality bounds are of interest. We propose a fully distributed algorithm based on a primal decomposition approach and an appropriate tightening of the coupling constraint. The algorithm is guaranteed to provide feasible solutions in finite time. Moreover, asymptotic and finite-time suboptimality bounds are established for the computed solution. Montecarlo simulations highlight the extremely low suboptimality bounds achieved by the algorithm.
Distributed Primal Decomposition for Large-Scale MILPs
Camisa A.
;Notarnicola I.;Notarstefano G.
2022
Abstract
This paper deals with a distributed Mixed-Integer Linear Programming (MILP) set-up arising in several control applications. Agents of a network aim to minimize the sum of local linear cost functions subject to both individual constraints and a linear coupling constraint involving all the decision variables. A key, challenging feature of the considered set-up is that some components of the decision variables must assume integer values. The addressed MILPs are NP-hard, nonconvex and large-scale. Moreover, several additional challenges arise in a distributed framework due to the coupling constraint, so that feasible solutions with guaranteed suboptimality bounds are of interest. We propose a fully distributed algorithm based on a primal decomposition approach and an appropriate tightening of the coupling constraint. The algorithm is guaranteed to provide feasible solutions in finite time. Moreover, asymptotic and finite-time suboptimality bounds are established for the computed solution. Montecarlo simulations highlight the extremely low suboptimality bounds achieved by the algorithm.File | Dimensione | Formato | |
---|---|---|---|
tac-milp.pdf
Open Access dal 05/08/2021
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.