This paper presents a novel statistical method for background subtraction aimed at robustness with regards to common disturbance factors such as sudden illumination changes, variations of the camera parameters, noise. The proposed approach relies on a novel non-linear parametric model for the local effect of disturbance factors on a neighbourhood of pixel intensities. Assuming additive gaussian noise, we also propose Bayesian estimation of model parameters by means of a maximum-a-posteriori regression and a statistical change detection test. Experimental results demonstrate that the proposed approach is state-of-the-art in sequences where disturbance factors yield linear as well as non-linear intensity transformations.

F. Tombari, A. Lanza, L. Di Stefano, S. Mattoccia (2009). Non-linear Parametric Bayesian Regression for Robust Background Subtraction. s.l : s.n [10.1109/WMVC.2009.5399242].

Non-linear Parametric Bayesian Regression for Robust Background Subtraction

TOMBARI, FEDERICO;LANZA, ALESSANDRO;DI STEFANO, LUIGI;MATTOCCIA, STEFANO
2009

Abstract

This paper presents a novel statistical method for background subtraction aimed at robustness with regards to common disturbance factors such as sudden illumination changes, variations of the camera parameters, noise. The proposed approach relies on a novel non-linear parametric model for the local effect of disturbance factors on a neighbourhood of pixel intensities. Assuming additive gaussian noise, we also propose Bayesian estimation of model parameters by means of a maximum-a-posteriori regression and a statistical change detection test. Experimental results demonstrate that the proposed approach is state-of-the-art in sequences where disturbance factors yield linear as well as non-linear intensity transformations.
2009
Proceedings of IEEE Workshop on Motion and Video Computing 2009
25
31
F. Tombari, A. Lanza, L. Di Stefano, S. Mattoccia (2009). Non-linear Parametric Bayesian Regression for Robust Background Subtraction. s.l : s.n [10.1109/WMVC.2009.5399242].
F. Tombari; A. Lanza; L. Di Stefano; S. Mattoccia
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/81781
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact