We explore the use of residual networks and neural attention for multiple argument mining tasks. We propose a residual architecture that exploits attention, multi-task learning, and makes use of ensemble, without any assumption on document or argument structure. We present an extensive experimental evaluation on five different corpora of user-generated comments, scientific publications, and persuasive essays. Our results show that our approach is a strong competitor against state-of-the-art architectures with a higher computational footprint or corpus-specific design, representing an interesting compromise between generality, performance accuracy and reduced model size.

Multi-Task Attentive Residual Networks for Argument Mining

Andrea Galassi
Primo
;
Paolo Torroni
2023

Abstract

We explore the use of residual networks and neural attention for multiple argument mining tasks. We propose a residual architecture that exploits attention, multi-task learning, and makes use of ensemble, without any assumption on document or argument structure. We present an extensive experimental evaluation on five different corpora of user-generated comments, scientific publications, and persuasive essays. Our results show that our approach is a strong competitor against state-of-the-art architectures with a higher computational footprint or corpus-specific design, representing an interesting compromise between generality, performance accuracy and reduced model size.
2023
Andrea Galassi; Marco Lippi; Paolo Torroni
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/816442
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact