We explore the use of residual networks and neural attention for multiple argument mining tasks. We propose a residual architecture that exploits attention, multi-task learning, and makes use of ensemble, without any assumption on document or argument structure. We present an extensive experimental evaluation on five different corpora of user-generated comments, scientific publications, and persuasive essays. Our results show that our approach is a strong competitor against state-of-the-art architectures with a higher computational footprint or corpus-specific design, representing an interesting compromise between generality, performance accuracy and reduced model size.
Andrea Galassi, Marco Lippi, Paolo Torroni (2023). Multi-Task Attentive Residual Networks for Argument Mining. IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 31, 1877-1892 [10.1109/TASLP.2023.3275040].
Multi-Task Attentive Residual Networks for Argument Mining
Andrea Galassi
Primo
;Paolo Torroni
2023
Abstract
We explore the use of residual networks and neural attention for multiple argument mining tasks. We propose a residual architecture that exploits attention, multi-task learning, and makes use of ensemble, without any assumption on document or argument structure. We present an extensive experimental evaluation on five different corpora of user-generated comments, scientific publications, and persuasive essays. Our results show that our approach is a strong competitor against state-of-the-art architectures with a higher computational footprint or corpus-specific design, representing an interesting compromise between generality, performance accuracy and reduced model size.File | Dimensione | Formato | |
---|---|---|---|
2102.12227v1.pdf
accesso aperto
Descrizione: pre-print
Tipo:
Preprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.8 MB
Formato
Adobe PDF
|
2.8 MB | Adobe PDF | Visualizza/Apri |
Multi-Task_Attentive_Residual_Networks_for_Argument_Mining.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.87 MB
Formato
Adobe PDF
|
2.87 MB | Adobe PDF | Visualizza/Apri |
Multi-Task-Attentive-Residual-Networks-for-Argument-Mining.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.54 MB
Formato
Adobe PDF
|
2.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.