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Multi-Task Attentive Residual Networks
for Argument Mining

Andrea Galassi, Marco Lippi, and Paolo Torroni

Abstract—We explore the use of residual networks and neural
attention for argument mining and in particular link prediction.
The method we propose makes no assumptions on document
or argument structure. We propose a residual architecture that
exploits attention, multi-task learning, and makes use of ensem-
ble. We evaluate it on a challenging data set consisting of user-
generated comments, as well as on two other datasets consisting of
scientific publications. On the user-generated content dataset, our
model outperforms state-of-the-art methods that rely on domain
knowledge. On the scientific literature datasets it achieves results
comparable to those yielded by BERT-based approaches but with
a much smaller model size.

Index Terms—Argument mining, residual networks, neural at-
tention, multi-task learning, ensemble learning, natural language
processing.

I. INTRODUCTION

ARGUMENT mining (AM) is an emerging research area
in natural language processing (NLP) which aims to

extract arguments from text collections [1]. AM consists of
several different tasks, that include argument detection, stance
classification, topic-based argumentative content retrieval, and
many others [2]. In this work we focus on the challenging
problem of assembling the structure of the argumentation
graph of a given input document. Such problem comprises
the detection of both argument components, and relations (or
links) amongst them, and is thus one of the most difficult steps
for AM systems.

While there is no unique definition of an argument, one of
the most popular ones was proposed by Douglas Walton [3],
who defined an argument as the collection of three parts: (i) a
claim, or assertion, about a given topic; (ii) a set of premises
supporting the claim; (iii) the inference between the premises
and the claim. Relations between arguments, or argument
components, typically consist of either support or attack links.

AM approaches are very often tailored to specific corpora or
genres [4]–[6], with solutions that are seldom general enough
to be directly applied to different data sets without the need of
any adaptation. It is very often the case that AM systems build
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upon sets of handcrafted features which encode information
about the underlying argument model, the genre, or the topic of
interest. These approaches typically make some assumptions
on the argumentative structure of the given input document,
thus constraining the resulting argument graph.

We propose a general-purpose neural architecture that is
domain-agnostic, and that does not rely on specific genre- or
topic-dependent features. The model exploits neural attention
and multi-task learning, jointly addressing the problems of
identifying the category of argument components, and predict-
ing the relations among them. Experimental results conducted
on a variety of different corpora show that the model is robust
and achieves good performance across the considered data
sets. They also suggest that, when background information
about the structure of annotations in a corpus is given, ad-hoc
approaches may yield better performance.

Our main contributions are:

• A novel approach to AM, which extends our previous
work [7] by introducing an attention module and ensem-
ble learning. Such a model performs multiple AM tasks
at the same time, and does not rely on ad-hoc features or
rich contextual information, but only on GloVe embed-
dings and on a widely applicable notion of distance.

• An analytical evaluation of the contribution of each added
module through an ablation study and a validation of
our model on a challenging corpus, indicating that our
proposed model improves state-of-the-art results in all the
tasks we address.

• A set of experiments designed to assess generality,
whereby we test our approach on three additional corpora
that vary in domain, style of writing, formatting, length,
and annotation model.

With respect to our previous work [7], this paper extends
the neural architecture with attention and ensemble learning,
and presents a more thorough and extensive experimental
evaluation, offering comparisons with state-of-the-art systems
across four different argument mining corpora. All the code
used in our experiments is publicly available.1

The paper is organized as follows. We present related
work in Section II. Section III introduces our architectures.
Section IV describes the data used for evaluation. Section V
describes our experimental setting, whereas results are pre-
sented and discussed in Section VI. Section VII concludes.

1https://github.com/AGalassi/StructurePrediction18.
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II. RELATED WORK

The adoption of deep learning approaches in AM is rela-
tively recent, compared to other areas of NLP. That is probably
a consequence of a lack of large AM corpora, considering the
complexity and peculiarities of the tasks at hand. Indeed, the
annotation of large corpora for AM system evaluation and
training proved to be challenging, as demonstrated by rela-
tively low IAA indicators and several unsatisfactory attempts
at crowdsourcing annotations. That is especially true for some
genres like user-generated content [8]. Reasons for that are
the nature of the task, which is intellectually demanding, and
the lack of a unified argument model, as “arguments” may
take very different shapes in different genres, also leading to
a trade-off between the expressiveness of the argument model
and the complexity of the annotation process and availability
of relevant data points, often resolved in favor or simple
argument models [1]. Earlier research mainly focused on the
definition of features for specific genres or even for specific
corpora. The differences between corpora, both regarding the
domain and the theoretical framework followed during the
annotation process, force researchers to test a model on the
same corpora on which it was trained, and to the best of
our knowledge, transfer learning approaches have not seen
wide experimentation. These two elements lead to the common
practice to define a method or a model and validate it only on
a single corpus or on a few corpora [1].

A. Multi-task Learning and Joint Learning for AM

Since AM includes many subtasks that are strongly inter-
related, a recent trend of this research field is to address
many of them at the same time using multi-task or joint
learning techniques. The aim of such approaches is to transfer
knowledge from the auxiliary tasks to the main one, or to
obtain coherent results on multiple tasks performed at once.

Stab and Gurevych [4] jointly address component classifi-
cation and link prediction on persuasive essays, using Integer
Linear Programming and a rich set of specific features, such as
lexical, structural, and contextual information. Various neural
architectures are tested in [9], including the deep biLSTM
multi-task learning (MTL) setting of [10], using sub-tasks
as auxiliary tasks. They conclude that neural networks can
outperform feature-based techniques in argument mining tasks.
Schulz et al. [11] investigate MTL settings addressing com-
ponent detection on five datasets as five different tasks. Their
architecture is composed of a CRF layer on top of a biLSTM,
whose recurrent layers are shared across the tasks. They obtain
positive results, and the MTL setting shows to be beneficial
especially for small datasets, even if the auxiliary AM tasks in-
volve different domains and even different component classes.
Lauscher et al. [12] analyze an MTL setting where rhetori-
cal classification tasks are performed along with component
detection. They use a hierarchical attention-based model so
to perform both word-level and sentence-level tasks with the
same neural architecture. The results show improvements in
the rhetorical tasks, but not in AM.

In [13], a structured learning framework based on factor
graphs is used to jointly classify all the propositions in a

document and determine which ones are linked together. The
models heavily rely on a priori knowledge, encoded as factors
and constraints, designed so to to enforce adherence to the
desired argumentation structure, according to the argument
model and domain characteristics. The authors discuss exper-
iments with six different models, which differ by complexity
and by how they model the factors, using RNNs and SVMs.
Their best result is obtained by using the same set of features
used in [4], resulting in a total feature size of around 7,000
for propositions and 2,100 for links.

B. Neural Attention for AM

Neural attention is a mechanism widely used in NLP to im-
prove performance and interpretability of neural networks, and
it is the core of many NLP architectures like RNNsearch [14],
Pointer Networks [15], and Transformer [16]. Given an input
sequence, and possibly a query element, attention consists in
the computation of a set of weights that represent the impor-
tance of each element of the sequence, which can be further
used to create a compact representation of such an input. There
are many different ways to compute such weights. A taxonomy
of attention models is proposed in our survey [17].

Among the AM systems that use neural attention, the one
used in [18] integrate hierarchical attention and biGRU for
the analysis of the quality of the argument, the one in [19]
use attention to integrate sentiment lexicon, while in other
works [20]–[22] attention modules are stacked on top of
recurrent layers. The use of Pointer Networks for AM has
also been investigated [23]. Transformer-based approaches in
AM use language representation models such as BERT [24]
and ELMO [25] to create contextualized word embeddings.
Specifically, Reimers et al. [26] address component classifica-
tion and argument clustering, a related task whose aim is to
identify similar arguments. Similarly, Lugini and Litman [27]
use BERT embeddings alongside other contextual information
to perform component classification, and Wang et al. [28] use
them to train a different model for each type of component.
Trautmann et al. [29] use pre-trained BERT models to perform
word-level classification of the stance of components regarding
a given topic, while Poudyal et al. [30] use RoBERTa [31], an
improved version of the original BERT.

Mayer et al. [32] present and conduct extensive experimen-
tation on the AbstRCT corpus, addressing four AM subtasks
with a pipeline scheme. They analyze the impact of various
BERT models, which are pre-trained on other corpora and
then fine-tuned on the corpus at hand. Segmentation and
component classification are performed as sequence tagging
with BIO scheme. Link prediction and relation classifica-
tion follow, taking into account all the pairs of components
obtained in the first step and classifying their relations as
attack, support, or non-existing. Their architecture is based
on bi-directional transformers followed by a softmax layer
and various encoders. Their approach is completely distance-
independent, but since they compare every possible pair of
components, the size of the dataset grows quadratically with
the number of components in the document, which makes
it hardly scalable to large documents. Another approach,
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consisting of predicting at most one related component for
each component, and then classifying their relation, has been
tested but yields worse results. The architectures that yield the
best results are BioBERT [33], which is pre-trained on a large-
scale biomedical corpus, SciBERT [34], which is pre-trained
on scientific articles of various nature, and RoBERTa.

III. MODEL

The design of our model is inspired by the great success that
residual networks [35] have obtained across many different
tasks related to NLP [16], [36], [37]. The core idea behind
residual networks is to create shortcuts that link neurons
belonging to distant layers, whereas standard feed-forward
networks typically link neurons belonging to subsequent layers
only. This kind of architecture usually results in a more
efficient training phase, allowing to train networks with con-
siderably more layers, reducing the overall computational
footprint.

The architecture we propose makes use of the dense resid-
ual network model, along with a Long Short-Term Memory
(LSTM) network [38], and an attention module [17]. The
network is trained to jointly perform three argument mining
sub-tasks: argument component classification, link prediction,
and relation classification.

More specifically, our approach operates on sentence pairs,
does not rely on document-level global optimization, and
does not enforce model constraints induced, for example, by
domain- or genre-specific background knowledge. This makes
our approach amenable to a possible integration within more
complex and sophisticated systems.

We performed model selection and hyper-parameter tuning
on a single corpus (CDCP, see Section IV) and we collected
results on validation data in order to tune the whole architec-
ture. There are two reasons for this choice: one the one hand,
we aim to show the robustness of the approach across different
corpora, while on the other we believe it is important to limit
the footprint of these experiments – an issue that is receiving
a growing attention in the community [39].

A. Model description

In order to achieve a general method which may be ap-
plicable in any domain, our method does not rely on a
specific argument model, but rather it reasons in terms of
abstract entities, such as argumentative components and links
among them. We instantiate such abstract entities into concrete
categories given by annotations, such as claims and premises,
supports and attacks, as soon as we apply the method to a
specific corpus whose annotations follow a concrete argument
model.

The detection of argumentative content in text is one typical
stage of AM systems [1]. Other works only focus on AM
tasks that assume that argumentative components and their
boundaries are already identified in the data. Such is the case
with Niculae et al. [13], whose CDCP dataset only consists of
argumentative elements, and with others [20], [27], [40] who
simply ignore the non-argumentative elements of the input
text. Accordingly, we define a document D as a sequence

of argumentative components and disregard the rest of the
input text. An argumentative component in turn is a sequence
of tokens, i.e., words and punctuation marks, representing
an argument, or part thereof. The labeling of components
is induced by the chosen argument model. Such a labeling
associates each component with the corresponding category
P of the argument component it contains. For this reason,
we will use the terms component, sentence, and proposition
as equivalent, and implying them as being argumentative by
assumption.

Given two argumentative components a and b belonging
to the same document, we represent a directed relation from
the former (source) to the latter (target) as a → b. Reflexive
relations (a→ a) are not allowed.2 Any pair of components is
characterized by four labels: the types of the two components
(Pa and Pb), the Boolean link label La→b, and relation (type)
label (Ra→b). The link label indicates the presence of a link,
and is therefore true if there exists a directed link from a
to b, and false otherwise. The relation label instead contains
information on the nature of the link connecting a and b.
It represents the relationship between the two components,
according to the links that connect a to b or b to a. Its domain
is composed, according to the underlying argument model, not
only by all the possible link types, but also by their opposite
types (e.g., attack and attackedBy), as well as by a special
category, None, meaning no link in either direction. One
reason to introduce opposite relation types is to mitigate the
unbalance caused by limited amount of instances each relation
type typically has, if compared with the number of instances
belonging to the None class. Likewise, we speculate that the
introduction of additional labels may contribute positively
to the optimization process. We shall remark that opposite
relation lables are exploited during training, but they are
discarded in the test phase, where they are simply substituted
with the None label, consistently with previous work.

We use a multi-objective learning setting where multiple
tasks are performed jointly for each possible input pair of
components (a, b) belonging to the same document D. Our
main focus is the identification of the link label La→b for each
possible input pair of propositions (a, b) belonging to the same
document D. Our first objective is thus a link prediction task,
which can be considered as a sub-task of argument structure
prediction. A second objective is the classification of the two
components,3 and our final objective is the classification of
the relationship between such components, i.e., the prediction
of labels Pa, Pb, Ra→b. A common issue in the classification
of pairs of document components is the fact that pairs grow
quadratically with the number of components, causing a large
imbalance against the negative class [30], [32]. One way
of dealing with that issue is to limit the possible pairs by
setting a maximum distance, thus obtaining a number of pairs
proportional to the number of components. Such a distance
is a hyper-parameter, and as such it may be empirically
determined [30].

2We will partially consider reflexive relations for the UKP dataset for a
specific reason explained in Section V.

3Since we examine only argumentative propositions, we do not consider
the non-argumentative class for component classification.
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B. Embeddings and features

Faithful to the main purpose of this work, of evaluating the
effectiveness of deep residual networks and attention for AM
without resorting to domain- or genre-specific information, our
system relies on a minimal set of widely applicable features.

Words are encoded using pre-trained GloVe embed-
dings [41] of size 300. Input sequences are zero-padded to
the length of the longest sequence in the datasets (henceforth
T ). Out-of-vocabulary terms are handled by creating random
embeddings.

In our previous work, we empirically assessed how the
distance between two components may be a relevant feature
for argument mining in the CDCP corpus [7]. The same ob-
servation has been recently made also with reference to other
corpora [9], [30], [32]. Similarly to what has been done in [9],
we define the number of argumentative components separating
source and target as argumentative distance, using the positive
sign when the source precedes the target, and the negative
sign otherwise. Inspired by works in other domains [42]–
[44], we encode such a scalar number in a 10-bit array, using
the first 5 bits for those cases where the source precedes
the target, and the other 5 bits for the opposite case. The
number of consecutive “1” values encodes the value of the
distance, with a maximum value of 5. For example, if the
argumentative distance is −3, the encoding is 00111 00000; if
the argumentative distance is 2, the encoding is 00000 11000.

C. The RESARG architecture

We use our own previous system [7] as a baseline. We refer
to it as RESARG. Its architecture, depicted in Figure 1a, is
based on residual networks [35] and comprises the following
macro blocks:
• two deep embedders, one for sources and one for targets,

that manipulate token embeddings;
• a dense encoding layer that reduces the dimensionality of

the features;
• a biLSTM that processes the sequences;
• a residual network;
• the final-stage classifiers.

The purpose of the deep embedders is to fine-tune the pre-
trained embeddings, a common procedure in deep learning-
based NLP solutions [45] whose usefulness was confirmed
by preliminary experiments. Each embedder is composed of
a single residual block consisting of four pre-activated time-
distributed dense layers. Accordingly, each layer applies the
same transformation to each embedding, regardless of their
position inside the sentence. All the layers have 50 neurons,
except for the last one, which has 300 neurons.

The dense encoding layer is necessary in order to obtain
an LSTM with fewer parameters, thus reducing the time
needed for training, and limiting overfitting. It applies a time-
distributed dense layer, which reduces the embedding size to
50, and a time average-pooling layer [46], which reduces the
sequence size by a factor of 10.

The resulting sequences are then given as input to the same
bidirectional LSTM, producing a single representation of size

50 for each component. Thus, for each proposition, T embed-
dings of size 300 are transformed first into T embeddings of
size 50, then into T/10 embeddings of size 50, and finally in
a single feature of size 50.

Source and target are processed in parallel in the first three
blocks, then concatenated together, along with the encoding of
the distance, and given as input to the final residual network.
The first level of the final residual network is a dense encoding
layer with 20 neurons, while the residual block is composed of
a layer with 5 neurons and one with 20 neurons. The outputs
of the first and the last layers of the residual networks are
summed up and provided as input to the classifiers.

The final stage of RESARG are three independent softmax
classifiers used to predict the source, the target, and the relation
labels. Each classifier, which predicts a label for a dedicated
task, contributes simultaneously to our learning model. The
link classifier is obtained by summing the relevant scores
produced by the relation classifier, aggregating the probability
assigned to the relation labels into a single link label.

All the dense layers use the rectifier activation function [47],
and they randomly initialize weights with He initializa-
tion [48]. The application of all non-linearity functions is
preceded by batch-normalization layers [49] and by dropout
layers [50], with probability p = 0.1.

D. The RESATTARG architecture

Motivated by the remarkable results obtained by attention-
based architectures in NLP tasks, we have extended RESARG
by including a neural attention block after the bi-LSTM mod-
ule. To better exploit the new attention module, we removed
the time pooling layer from the dense encoding block, so
as to avoid loss of information along the temporal axis,
and to maintain the whole output sequence from the LSTM.
Therefore, in this new model, the input and the output of the
LSTM module have size (T , 50). The resulting architecture,
named RESATTARG, is depicted in Figure 1b.

The attention module is implemented as coarse-grained
parallel co-attention [17], so as to consider both components at
the same time while computing attention on each of them. Our
method consists of exploiting the average embedding of one
proposition as a query element while computing attention on
the other, similarly to what has been done in [51]. Specifically,
calling Ks and Kt the outputs of the bi-LSTM obtained from,
respectively, the processing of the source and the target propo-
sitions, we compute the (masked) average of Kt, obtaining a
single embedding gt of size 50 (Eq. 1). This embedding is
used as query element to compute additive soft attention [17]
on Ks, obtaining a single source context vector cs of size 50.
The details of this process are described in Equations 2, 3,
and 4, where the matrices W1, W2 and the vectors b, w3

are learnable parameters. An equivalent symmetric procedure
is used to compute attention on Kt so as to obtain ct. The
output of this block are two embeddings of size 50, as in our
previous architecture.

gt = masked avg(Kt) (1)

es = w3
T relu(W1Ks +W2 gt + b) (2)
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(a) RESARG architecture [7].

(b) RESATTARG architecture.

Fig. 1: A block diagram of the proposed architectures. The figure shows, next to each arrow, the dimensionality of the data
involved (using the CDCP temporal size T = 153), so as to clarify the size of the inputs and the outputs of each block.

as = softmax(es) (3)

cs =

T∑
i=1

ksi asi (4)

The resulting architecture has close to 5.5M parameters,
140,000 of which are trainable. If compared with other state-
of-the-art neural architectures, such as BERTBASE and its
110M parameters, RESATTARG is considerably smaller, and
accordingly it is less computationally demanding.

E. Repeated trainings and ensemble learning

Since the training of neural models is non-deterministic,
the results of a single training procedure are influenced by
the random seed that is used, thus they may not be reliable or
reproducible [52], [53]. Such problem also affects our previous
results [7], since they were obtained from a single training
experiment.

We have decided to replicate that experiment by repeating
the training procedure 10 times, with different seeds, obtaining
10 trained neural networks for each configuration. We will
evaluate our models in two different ways. At first, we will
consider the average of the scores obtained by every single
network for each metric. Then, we evaluate the predictions
obtained using all the 10 models in ensemble voting.

In our ensemble setting the class of each entity is assigned
as the class voted by the majority of the networks. This
technique is similar to the concept of bootstrap aggregating,
also known as bagging [54]. However, while in standard

bagging each model is trained on a random sample of the
training set, here we train all the models on the same training
set, since stochastic elements are already present in the training
procedure itself. We have chosen this ensemble method for the
sake of simplicity, but more advanced techniques do exist and
may yield better results [55].

IV. CORPORA

We validate our approach on 4 corpora differing from each
other in various dimensions: the domain of the documents,
their average length, the formatting, and the argumentative
model followed for the annotations.

A. Cornell eRulemaking Corpus (CDCP)

The Cornell eRulemaking Corpus (CDCP) [13], [56] con-
sists of user-generated documents in which specific regulations
are discussed. The authors have collected user comments from
an eRulemaking website on the topic of Consumer Debt Col-
lection Practices rule. The corpus contains 731 user comments,
for a total of about 4,700 components, all considered to be
argumentative.

As typical of user-generated data, the comments are not
structured, and often present grammatical errors, typos, and
do not follow usual writing conventions (such as the blank
space after the period mark). This complicates pre-processing,
since most of the off-the-shelf tools turn out to be inaccurate
even in simple tasks such as tokenization.

Annotations follow the argument model proposed in [57],
where links are constrained to form directed graphs. The
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corpus is suitable both for component and relation classifica-
tion, since it presents 5 classes of propositions and two types
of links. We will use the version of CDCP without nested
proposition and guaranteed transitive closure [13].

The components are addressed as propositions, and they
consist of a sentence or a clause. Propositions are divided into
POLICY (17%), VALUE (45%), FACT (16%), TESTIMONY
(21%) and REFERENCE (1%). Only 3% of more than 43,000
possible proposition pairs are linked; almost all links are
labeled as REASON (97%), whereas only a few are labeled
as EVIDENCE (3%).

The unstructured nature of documents, the strong unbalance
between the classes, and the presence of noise make the
corpus particularly challenging for all the subtasks of argument
mining, especially those that involve the relationships between
components.

B. AbstRCT

The AbstRCT Corpus [32] extends previous work [58],
and consists of abstracts of scientific papers regarding ran-
domized control trials for the treatment of specific diseases
(i.e., neoplasm, glaucoma, hypertension, hepatitis b, diabetes).
The final corpus contains 659 abstracts, for a total of about
4,000 argumentative components. AbstRCT is divided into
three parts: neoplasm, glaucoma, and mixed. The first one
contains 500 abstracts about neoplasm, divided into train
(350), test (100), and validation (50) splits. The remaining
two are designed to be test sets. One contains 100 abstracts
for glaucoma, the other 20 abstracts for each disease4.

Components are labeled as EVIDENCE (2,808) and CLAIM
(1,390), while relations are labeled as SUPPORT (2,259) and
ATTACK (342).5 About 10% of about 25,000 possible com-
ponent pairs have a labeled relationship. The argumentative
model chosen for annotation enforces only one constraint:
claims can have an outgoing link only to other claims.

With respect of CDCP, this corpus is less noisy and the
distribution of the classes is more balanced. We have chosen
this as a benchmark to demonstrate that our approach is
independent of the domain and of the argument model.

C. Doctor Inventor Argumentative Corpus (DrInventor)

The Doctor Inventor Argumentative Corpus (DrInven-
tor) [59] is the result of an extension of the Doctor Inventor
corpus [60], which includes an annotation layer containing
argumentative components and relations. DrInventor consists
of 40 scientific publications from computer graphics, which
contain about 12,000 argumentative component labels, as well
as annotations for other tasks.

The classes of argumentative components are DATA (4,093),
OWN CLAIM (5,445), and BACKGROUND CLAIM (2,751).
The former two are related to the concepts of premises and
claims, while the latter is something in between, since it is a

4Glaucoma and neoplasm documents of the mixed set are present also in
the respective test set.

5The corpus allows also the distinction between CLAIM/MAJOR CLAIM
and ATTACK/PARTIAL ATTACK. For the sake of consistency with previous
works, this detail will not be considered.

claim related to some background knowledge, such as that
made by another author in a previous work. The relation
classes are SUPPORTS (5,790), CONTRADICTS (696), and
SEMANTICALLY SAME (44), since it is common practice
in scientific publications to re-iterate the same claim (or more
rarely the same data) multiple times.

Since DrInventor includes documents where the structure of
the discourse is complex, and data are often presented along
with claims, it makes argument mining more challenging:
in more than 1,000 cases some components are split into
multiple text sequences, located in non-contiguous parts of the
documents. This phenomenon mostly concerns claims, but data
are affected too, in fewer cases. This introduces the difficulty
of recognizing different segments of the documents as part of
a single component and makes link prediction more difficult
to address through non-pipeline approaches.

The unbalanced distribution between the three classes and
the presence of split components makes this corpus quite chal-
lenging for link prediction, a difficulty which is highlighted
also by the low inter-annotator agreement reported in the
original paper.

D. Persuasive Essays Corpus (UKP)

The Persuasive Essays Corpus (UKP) [4] consist of 402
documents coming from an online community where users
post essays and other material, provide feedback, and advise
each other. The dataset is divided into a test split of 80 essays
and a training split with the remaining documents.

UKP defines three classes of argumentative components:
MAJOR CLAIM (751), CLAIM (1,506), and PREMISE
(3,832). Premises may be linked to CLAIMS through relations
of SUPPORT (3,613) or ATTACK (219). MAJOR CLAIMS
are not linked to other components.6 While these classes of
components are not unlike those used in other datasets, the
argumentation model instead is tailored on this specific corpus.
It amounts to an argument graph consisting of trees, each
rooted on a claim. Each tree can only include components
belonging to the same paragraph. Claims do not have outgoing
relationships because only premises can descend from claims.
Each premises has exactly one outgoing relation. Finally,
the structure of the argumentation follows domain-specific
conventions. For example, in most cases, the MAJOR CLAIM
is in the first or the last paragraph of the document, and more
often than not it is the only argumentative component in its
paragraph.

Thanks to the highly constrained nature of the UKP data,
we expect methods based on the document structure to have
an edge over general, structure-agnostic methods such as the
one we propose. However, we believe it is important to include
also this type of data in the present study, in order to evaluate
our approach in as many and diverse scenarios as possible,
and better understand its advantages as well as its limitations.

6In fact, each component is linked to a MAJOR CLAIM via an attribute
called stance. Therefore, one could use this dataset for stance detection, by
creating explicit relationships toward the major claims. However, that would
be outside the scope of this work.
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V. EXPERIMENTAL SETTING

We consider a multi-task formulation for our learning prob-
lem. The loss function is given by the weighted sum of four
different components: the categorical cross-entropy on three
labels (source and target categories, link relation category) and
an L2 regularization on the network parameters.

We initially evaluate our new architecture against our pre-
vious model and the structured learning approach of [13] on
CDCP, presenting an ablation study of the new components
we have introduced. Then, we extend the evaluation to other
three data sets, for which we compare our approach against
the state-of-the-art.

In our approach each component is involved in many pairs,
both as a source and as a target, and accordingly it is classified
multiple times by the same network. The label will be assigned
by the model by considering the average probability computed
by the ensemble for each class, and by thus choosing the
class with the highest score. Alternative approaches could
be to assign the class that results to be the most probable
in most of the cases, thus relying on a majority vote. A
further option could be to simply consider the label with
the highest confidence. However, the latter procedure might
be more sensitive to outliers, because the misclassification
of a component in just one pair would lead to the final
misclassification of the component, regardless of all the other
pairs. A deeper analysis of different techniques to address
these issues is left to future research.

A. Data Preparation

Our architecture allows us to use the CDCP and AbstRCT
datasets directly, without need for further pre-processing.

For what concerns DrInventor, instead, specific data pre-
processing is needed to address two aspects of this dataset:
the presence of lengthy documents and split components.
Lengthy documents make it inconvenient to consider all the
possible pairs of argumentative units. Doing so would not
only be infeasibile with regular computational resources, but
it would also yield an extremely unbalanced dataset for link
prediction, with less than 1% of pairs linked. We thus filtered
out all the pairs that did not appear in the same section of
the document, and whose argumentative distance is included
between -10 and +10. A second peculiarity of this dataset
is the presence of components that include non-argumentative
material. These “split components” are made of two sequences
x and y separated by a third, non-argumentative sequence z. In
those cases, we split x and y into two unrelated components,
and attributed them the same label, the same links, and the
same argumentative relations with the other components. The
resulting dataset consists of about 8,700 links out of 240,000
possible pairs, which amount roughly to 3.6%. Among these
links, SUPPORTS amount to 89%, CONTRADICTS to 10%,
and the remaining 1% are SEMANTICALLY SAME relations.

Regarding UKP, like others did before us [4], [13], we also
consider exclusively pairs of components that belong to the
same paragraph. However, many paragraphs contain only a
single component. That is the case, for instance, with about
400 paragraphs containing a single major claim. In order to

include also them in our pair-based classification method, we
decided to introduce “self pairs” into our dataset, which are
instances where the same component acts both as source and
target. This significantly increases the number of pairs (from
22,000 to 28,000). So, to improve optimization and enable
a comparison with previous approaches, we did not consider
these pairs for link prediction and relation classification in
validation and testing.

B. Comparison with other methods

Not all the approaches to AM are easily compared against
one another. This is the case, for example, of approaches that
perform only few tasks versus end-to-end systems, or pipeline
versus joint learning approaches. Since we perform component
classification on propositions or sentences, to make our results
comparable with architectures that perform it token-wise, we
split each classified component into tokens that share the same
label, and compute the evaluation of token-wise classification.
Since the tokenization method may not be the same one used
by other approaches, the final results may not be perfectly
comparable, but we believe that this minor difference will not
introduce appreciable errors.

We shall also remark that in our approach we consider
argumentative components as already selected and perfectly
bounded, therefore we perform component classification only
between argumentative classes and we do not consider the
“non-argumentative” class as a possibility. This makes our
figures incomparable against those obtained by architectures
that address both component identification and classification
at once, such as [32], since they include “non-argumentative”
among the possible classes and thus address a harder prob-
lem. A similar consideration holds regarding the pipeline
approaches that perform evaluation of each step based on the
result of the previous one instead of using the gold standard. In
this case, the errors introduced by early steps introduce noise
which may affect the evaluation of subsequent steps. It is once
again the case of [32], where errors obtained during the first
step may introduce noise in the link prediction/relation clas-
sification tasks. We could not find a solution to this problem,
but we argue that, nevertheless, a qualitative evaluation of our
method can still benefit from a comparison with these other
approaches.

C. Optimization

We shall remark that the hyper-parameters of the archi-
tecture and of the learning model have been tuned on the
validation set of CDCP. It is also important to highlight that
we use the same set of hyper-parameters in all the experi-
ments. Our purpose is to test whether our approach can yield
satisfactory results across different and heterogeneous corpora
without the need of re-tuning, and therefore limiting its cost
and its environmental impact [39]. Nonetheless, we are aware
that performing a specific calibration for each corpus would
probably improve our results. We use the Adam optimizer [61]
with parameters b1 = 0.9 and b2 = 0.9999, applying
proportional decay of the initial learning rate α0 = 5× 10−3.
The weights of the four components of the loss function are
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set to 1 for the cross entropy of source and target, 10 for
the cross entropy of relation, and 10−4 for the regularization.
The training was early-stopped after 100 epochs with no
improvements on the F1 score of the Link class computed
over validation data, except for DrInventor, where we early-
stopped after 20 epochs of patience due to the dataset’s size
and much heavier computational footprint.

VI. RESULTS AND DISCUSSION

In this section we will present the experimental results
obtained for each corpus. We will compare the RESATTARG
and RESARG architectures, thus assessing the impact of the
attention module, and we will also analyze the performance
gain introduced by the ensemble approach.

A. CDCP

We used the same validation set as in our earlier work [7],
which was created by randomly selecting documents from
the original training split with 10% probability. We used the
remaining documents as training data and the original test split
as is. To provide a summary evaluation, following [13], we
measured the performance of the models by computing the
F1 score for links, propositions, and the average between the
two. More specifically, for the links we measured the F1 of
the positive classes, whereas for the propositions we used the
score of each class and then we computed the macro-average.
We also reported the F1 score for each relation class, alongside
their macro-average. The NONE class of relation classification
corresponds to the negative class of link prediction.

A first question we address was whether our results with
a single model were solid or to what extent influenced by
the non-deterministic nature of the training procedure. We
compared our baseline model with the average scores obtained
by 10 networks, with our ensemble setting, and against the
structured approach used in [13]. The results are shown in
Table I. The average computed over the 10 networks leads to
a worse performance on Link prediction with respect to our
previous results. This difference suggests that our previous
results were the result of a “lucky” training. Nonetheless,
the average score on the two tasks remains similar (between
47 and 48), just a few points below the state of the art.
The ensemble approach substantially improves the results,
outperforming the structured learning approach on both tasks.
The results on link prediction are still below those obtained
in the first experiment, if only by less than 1%.

Introducing the attention module in the architecture leads
to appreciable improvements for both the average and the
ensemble approach. In particular, the the latter’s performance
marks a new state-of-the-art for this corpus, even for the
relation classification task. As far as relation label prediction,
our approaches fail to predict the EVIDENCE relation. it is a
negative result, but hardly surprising, since EVIDENCE is a
rather rare class in this dataset (less than 1% of all relations).

To estimate the agreement among the networks in the
ensemble architecture, and have a measure of the architecture’s
robustness against the implicit randomness of the training
procedure, we have computed Krippendorff’s alpha [62] for

the three tasks. We obtained α = 0.68 for component classi-
fication, and α = 0.50 for both link prediction and relation
classification. These values are similar to the IAA obtained
by the authors of the corpus, and confirm the difficulty of the
link prediction task.

Figure 2 shows confusion matrices for component classifi-
cation on CDCP. Unsurprisingly, the most common mistake
regards the prediction of facts as values – VALUE being by
far the largest class in the corpus, and so affected by many
false positives. Such an ambiguity between the two classes has
also been reported during the annotation process.

Interestingly, the confusion matrices of the structured ap-
proach and of our methods are quite similar. We speculate that
our networks may have learned a behavior similar to that pro-
duced by the structured approach, with no need to receive any
of the constraints or information regarding the argumentative
structure that are instead injected in the structured approach.

B. AbstRCT

For what concerns AbstRCT, we compare our architectures
against the best methods presented by its authors [32], whose
results are reported in the first rows of Tables II and III.
We trained and validated our model on the respective splits
of the Neoplasm dataset, using the remainder of the dataset
for testing. For reasons we already explained, the approach
presented by Mayer et al. [32] is not directly comparable with
ours, therefore the comparison can only be qualitative. To ease
comparison with future approaches, we report in Table IV
some additional details on our results.

As for component classification, RESATTARG with ensem-
ble yields the best result, performing comparably with the state
of the art. Our approaches obtain better scores for EVIDENCE
than CLAIM on all datasets. Similarly to the Transformer-
based approaches, our architectures perform better on the
mixed test set than on the neoplasm one. We yield better
results on all datasets for what concerns the micro f1 score.
However, for what concerns macro F1, although our archi-
tecture improves the previous approaches on Neoplasm, it is
outperfomed by BioBERT on Glaucoma and Mixed. In relation
classification, RESATTARG with ensemble outperforms all the
other models on Neoplasm and Glaucoma, and it performs
about 1% worse than SciBERT on Mixed. It is interesting to
notice that in this task BioBERT is largely outperformed by
our approach. Almost all the metrics confirm that the intro-
duction of attention and ensemble improve our architectures.
The agreement between the networks RESATTARG is very
high for token-wise component classification in each dataset
(α between 0.81 and 0.83), and lower but still acceptable for
the other two tasks (α = 0.67 on neoplasm and α = 0.62 for
the other two).

These good results indicate that our method may be a valu-
able approach with well-structured corpora. Moreover, such
results are attained without resorting to contextual embeddings
or pre-training on domain-related corpora, but by only relying
on non-contextual, general-purpose embeddings.
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TABLE I: Results of the experiments involving multiple trainings of the same models and use of attention on CDCP. From
left to right: our previous result [7] obtained with a single training of RESARG, the average scores of the same architecture
trained 10 times, the scores of the ensemble learning setting of the same model, the average and the ensemble scores of the
new attention-based architecture RESATTARG, and the best results of structured approaches based on SVM and RNN. For
each class, the number of instances is reported in parenthesis. F1 and macro F1 percentage scores are reported.

RESARG RESATTARG Structured [13]
Single [7] Average Ensemble Average Ensemble SVM RNN

Average (Link and Components) 47.28 47.75 52.14 51.57 54.22 50 43.5
Link (272) 29.29 24.99 28.76 27.40 29.73 26.7 14.6
Components (973) 65.28 70.51 75.53 75.75 78.71 73.50 72.7

VALUE (491) 72.19 72.30 75.37 77.84 80.37 76.4 73.70
POLICY (153) 74.36 75.39 79.60 80.09 82.55 77.3 76.8
TESTIMONY (204) 72.86 73.46 76.33 76.42 81.19 71.7 75.8
FACT (124) 40.31 41.39 46.37 44.39 49.42 42.5 42.2
REFERENCE (1) 66.67 90.00 100 100 100 100 100

Relation (9,484) - 41.78 42.25 42.69 42.95 - -
REASON (265) 30.02 25.10 28.57 27.88 30.56 - -
EVIDENCE (7) 0 2.50 0 2.22 0 - -
NONE (9,212) - 97.76 98.21 98.03 98.32 - -

Fig. 2: Confusion matrices for component classification on CDCP. From left to right: Structured Learning approach, our
previous result with RESARG [7], RESARG used in ensemble fashion, and RESATTARG used in ensemble fashion.

C. DrInventor

To the best of our knowledge, the only approach tested
on this corpus is the architecture for token-wise component
classification used by Lauscher et al. [12], which makes
use of GloVe embeddings and a Bi-LSTM followed by a
feed-forward neural network with a single hidden layer as
classifier. We thus consider such an approach as a baseline.
Like Lauscher et al., we reserved 30% of the documents of
the DrInventor corpus as test set, and 20% of the remaining
part as validation set. It is worth remarking that for the tasks of
link prediction and relation classification we are considering
a limited number of pairs.

Tables V and VI includes a detailed report of our per-
formance on the dataset. We outperform the baseline by a
wide margin. Moreover, we address two additional tasks,
link prediction and relation classification, thus offering a
benchmark for future work. These results confirm once more
that attention and ensemble together give a crucial contribution
to the classifier.

Differently from previous experiments, the agreement be-
tween the networks RESATTARG is similar for all the tasks,
with only α = 0.56 for component classification and α = 0.60
for the remaining tasks. The agreement for Component Classi-
fication is lower than on the previous datasets and may suggest
that this dataset is more challenging.

Our model is incapable of classifying the SEMANTI-
CALLY SAME relation and has difficulties also with CON-

TRADICTS. That is hardly surprising, if we consider that
these are the two least represented classes in this dataset. It is
less straightforward to understand why the model is better at
classifying BACKGROUND CLAIM rather than DATA, even
if the latter are more represented than the former. We speculate
it may be related to the fact that in some instances data may
amount to citations or text other than proper sentences.

D. UKP

UKP comes with two strong baselines: the ILP joint model
proposed by the authors of the dataset [4] and Niculae et
al.’s structured learning approach [13]. We compared based on
the original test split of the dataset, using about 10% of the
documents of the training split as validation split. Apparently
our approach is largely below the baselines, with a difference
in F1 scores between 20% and 30%. The agreement between
the networks is also low, with α = 0.57 for component
classification and α = 0.38 for link prediction, assessing
them as nearly acceptable for the first task but unreliable for
the others. We interpret these results as an indication that a
general-purpose and domain-agnostic architecture such as ours
struggles with datasets characterized by strong regularities that
can be best exploited by domain-oriented approaches.

VII. CONCLUSIONS

In this paper we presented RESATTARG, a new neural
architecture for argument mining based on residual networks,
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TABLE II: Results of component classification on AbstRCT. We report the F1 score related to the micro average, the macro
average, the EVIDENCE class, and the CLAIM class obtained on the 3 test sets. Our approach is not directly comparable with
component classification of [32] and the comparison must be considered qualitative.

Neoplasm Glaucoma Mixed
Level Approach f1 F1 E C f1 F1 E C f1 F1 E C

Token

Transformer-based [32]
BioBERT+GRU+CRF 90 84 90 87 92 91 91 93 92 91 92 91
SciBERT+GRU+CRF 90 87 92 88 91 89 91 93 91 88 93 90

Our approach
RESARG (avg) 90.66 88.20 93.58 82.81 91.84 87.49 94.86 80.11 91.25 87.79 94.29 81.29
RESARG+Ensemble 90.75 88.10 93.72 82.47 92.50 88.48 95.28 81.68 91.61 88.21 94.54 91.61
RESATTARG (avg) 90.80 88.60 93.59 83.61 92.02 88.02 94.93 81.11 91.58 88.72 94.40 83.04
RESATTARG+Ensemble 92.12 90.14 94.56 85.72 92.92 89.35 95.52 83.19 92.79 90.26 95.23 85.30

Component

Our approach
RESARG (avg) 87.42 86.18 90.31 82.04 88.08 85.53 91.59 79.48 88.20 86.74 91.13 82.35
RESARG+Ensemble 87.76 86.38 90.71 82.05 89.39 87.13 92.53 81.74 89.00 87.59 91.77 83.42
RESATTARG (avg) 87.32 86.19 90.11 82.27 88.50 86.26 91.79 80.72 88.65 87.51 91.27 83.74
RESATTARG+Ensemble 88.92 87.87 91.44 84.30 89.73 87.71 92.69 86.54 90.67 89.70 92.86 82.72

TABLE III: Results of relation classification on AbstRCT. We
report the macro averaged F1 score obtained on the 3 test sets.

Neoplasm Glaucoma Mixed
Approach

Transformer-based [32]
BioBERT 64 58 61
SciBERT 68 62 69
RoBERTa 67 66 67

Our approach
RESARG (avg) 59.15 57.23 60.31
RESARG+Ensemble 63.16 61.86 68.35
RESATTARG (avg) 66.49 62.68 63.47
RESATTARG+Ensemble 70.92 68.40 67.66

TABLE IV: Results of RESATTARG with Ensemble for
Link Prediction and Relation Classification on AbstRCT. The
“Link” column refers to the F1 score of the positive class.
The “Relation” column reports the result of the macro F1

score. The other columns report the F1 score of the respective
classes.

Link Relation SUPPORT ATTACK NONE
Test set

Neoplasm 54.43 70.92 52.77 65.38 94.54
Glaucoma 55.23 68.40 54.73 56.00 94.36
Mixed 51.20 67.66 49.62 59.09 94.21

multi-task learning, neural attention, and ensemble learning.
Our approach does not rely on domain-tailored features or
encodings. On the contrary, it only uses general-purpose
embeddings and a broadly applicable distance feature, making
it suitable for any domain and argumentative model. Moreover,
RESATTARG is considerably smaller than other state-of-the-
art approaches, making it less expensive to train, and more
sustainable from an environmental perspective [39].

RESATTARG outperforms state-of-the-art architectures on a
variety of tasks and datasets. We conducted ablation studies
to demonstrate that the attention module and the ensemble
learning addition give a positive contribution, improving on
our previous architecture [7]. The use of ensemble also in-

TABLE V: Results of component classification on DrInventor.
“Average” is the macro F1 score, the remaining columns report
the F1 score of the classes OWN CLAIM, BACKGROUND
CLAIM, DATA.

Level Approach Average O C B C D

Token

Bi-LSTM [12] 44.70 - - -
RESARG (avg) 58.27 72.31 51.36 51.14
RESARG+Ens 61.16 75.77 54.24 53.48
RESATTARG (avg) 61.77 73.66 57.70 53.95
RESATTARG+Ens 65.71 78.03 61.58 57.53

Component

RESARG (avg) 60.62 65.65 45.63 70.56
RESARG+Ens 62.97 68.97 48.03 71.90
RESATTARG (avg) 66.19 68.61 56.07 73.89
RESATTARG+Ens 69.64 73.13 59.63 76.15

TABLE VI: Results of RESATTARG with Ensemble for Link
Prediction, and Relation Classification on DrInventor. The
“Link” column refers to the F1 score of the positive class.
The “Relation” column reports the result of the macro F1

score. The other columns report the F1 score of the respective
classes.

Link Relation SUPP CON SEM NONE
SAME

43.66 37.72 45.90 6.61 0 98.37

creases the robustness of this approach against the intrinsic
randomness of neural architecture training.

The main limitations of RESATTARG are its seemingly poor
performance on datasets characterized by strong regularities
and its limited scalability to large documents. To fill this gap,
we believe that neural-symbolic approaches [63] may enable a
systematic and modular integration of background knowledge.
Such a knowledge would contribute during the optimization
process, so as to influence and improve the training, without
compromising the generality of the neural architecture. For
what concerns scalability, we have addressed this problem by
limiting the range of argumentative relationships using a fixed-
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size window, with the drawback of imposing a constraint on
the model of the argument. Alternatively to our pair-based
approach, other authors have proposed multiple-choice classi-
fiers [32], pointer networks [23], and sequence labelling [9].
Such methods should scale better, but they enforce a constraint
on the argument model as well, imposing that any component
can have only one outgoing relationship, which makes them
unsuitable to some corpora. While successful approaches to
argument retrieval have been recently published [64], scala-
bility is still an open challenge for AM systems aiming to
reconstruct the argumentation structure.
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