In this paper, a systematic procedure for the definition of the dynamical model in port-Hamiltonian form of mechanical systems is presented as the result of the power-conserving interconnection of a set of basic components (rigid bodies, flexible links, and kinematic pairs). Since rigid bodies and flexible links are described within the port-Hamiltonian formalism, their interconnection is possible once a proper relation between the power-conjugated port variables is deduced. These relations are the analogous of the Kirchhoff laws of circuit theory. From the analysis of a set of oriented graphs that describe the topology of the mechanism, an automatic procedure for deriving the dynamical model of a mechanical system is illustrated. The final model is a mixed port-Hamiltonian system, because of the presence of a finite-dimensional subsystem (modeling the rigid bodies) and an infinite-dimensional one (describing the flexible links). Besides facilitating the deduction of the dynamical equations, it is shown how the intrinsic modularity of this approach also simplifies the simulation phase
Titolo: | Port-Based Modeling and Simulation of Mechanical Systems With Rigid and Flexible Links |
Autore/i: | MACCHELLI, ALESSANDRO; MELCHIORRI, CLAUDIO; S. STRAMIGIOLI |
Autore/i Unibo: | |
Anno: | 2009 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1109/TRO.2009.2026504 |
Abstract: | In this paper, a systematic procedure for the definition of the dynamical model in port-Hamiltonian form of mechanical systems is presented as the result of the power-conserving interconnection of a set of basic components (rigid bodies, flexible links, and kinematic pairs). Since rigid bodies and flexible links are described within the port-Hamiltonian formalism, their interconnection is possible once a proper relation between the power-conjugated port variables is deduced. These relations are the analogous of the Kirchhoff laws of circuit theory. From the analysis of a set of oriented graphs that describe the topology of the mechanism, an automatic procedure for deriving the dynamical model of a mechanical system is illustrated. The final model is a mixed port-Hamiltonian system, because of the presence of a finite-dimensional subsystem (modeling the rigid bodies) and an infinite-dimensional one (describing the flexible links). Besides facilitating the deduction of the dynamical equations, it is shown how the intrinsic modularity of this approach also simplifies the simulation phase |
Data prodotto definitivo in UGOV: | 2009-12-15 |
Appare nelle tipologie: | 1.01 Articolo in rivista |