We show that the centered discrete Hilbert transform on integers applied to a function can be written as the conditional expectation of a transform of stochastic integrals, where the stochastic processes considered have jump components. The stochastic representation of the function and that of its Hilbert transform are under differential subordination and orthogonality relation with respect to the sharp bracket of quadratic covariation. This illustrates the Cauchy-Riemann relations of analytic functions in this setting. This result is inspired by the seminal work of Gundy and Varopoulos on stochastic representation of the Hilbert transform in the continuous setting.

Arcozzi N., Domelevo K., Petermichl S. (2020). Discrete hilbert transform à la gundy-Varopoulos. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 148(6), 2433-2446 [10.1090/proc/14492].

Discrete hilbert transform à la gundy-Varopoulos

Arcozzi N.;
2020

Abstract

We show that the centered discrete Hilbert transform on integers applied to a function can be written as the conditional expectation of a transform of stochastic integrals, where the stochastic processes considered have jump components. The stochastic representation of the function and that of its Hilbert transform are under differential subordination and orthogonality relation with respect to the sharp bracket of quadratic covariation. This illustrates the Cauchy-Riemann relations of analytic functions in this setting. This result is inspired by the seminal work of Gundy and Varopoulos on stochastic representation of the Hilbert transform in the continuous setting.
2020
Arcozzi N., Domelevo K., Petermichl S. (2020). Discrete hilbert transform à la gundy-Varopoulos. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 148(6), 2433-2446 [10.1090/proc/14492].
Arcozzi N.; Domelevo K.; Petermichl S.
File in questo prodotto:
File Dimensione Formato  
proc14492_AM-1.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 387.81 kB
Formato Adobe PDF
387.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/802448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact