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STOCHASTIC REPRESENTATION OF A DISCRETE HILBERT

TRANSFORM

N. ARCOZZI, K. DOMELEVO, AND S. PETERMICHL

Abstract. We show that the centered discrete Hilbert transform on integers

applied to a function can be written as the conditional expectation of a trans-

form of stochastic integrals, where the stochastic processes considered have
jump components. The stochastic representation of the function and that of

its Hilbert transform are under differential subordination and orthogonality

relation with respect to the sharp bracket of quadratic covariation. This illus-
trates the Cauchy Riemann relations of analytic functions in this setting. This

result is inspired by the seminal work of Gundy and Varopoulos on stochastic
representation of the Hilbert transform in the continuous setting.

1. Introduction

The subject of discrete analyticity and discrete Cauchy–Riemann relations has
been investigated for a long time. It originated in the works of Ferrand [7] and
Isaacs [12]. The relationship of Cauchy–Riemann relations to a certain discrete
Hilbert transform was understood in Duffin [5] together with the corresponding
notions of discrete harmonic conjugate functions. The discrete Hilbert transform
also appeared in relation with the Riesz–Titchmarsh transform as described in
the significant discovery by Matsaev [17]. See also Matsaev–Sodin [16].

Despite the fact that (different notions of) discrete Hilbert transforms exist for
a long time, the precise Lp norm of these discrete operators are still a very famous
open question. Optimal norm estimates are only known in the continuous case – see
Pichorides [18], Verbitsky [22], Essen [6] – whose proofs have a probabilistic
reinterpretation, in part through the formulae of Gundy-Varopoulos [10]. It is
remarkable that such representations allow one to prove sharp Lp estimates for dis-
crete second order Riesz transforms as proved in [4] by using the Bellman technique
and in [2] by using stochastic tools. The versatility of these stochastic represen-
tations is also seen in [3] where various sharp estimates for discrete second order
Riesz transforms are proved. Inspired by this fact, we aim at an understanding of
a discrete Hilbert transform through a stochastic integral formula, resembling the
continuous analog of Gundy-Varopoulos.

Regarding Lp–norm estimates for the discrete Hilbert transform of the type we
study below, to the best of our knowledge the best constant is by Gohberg and
Krupnik [8]. One important ingredient in the proof of sharp estimates is the use of
harmonic polynomials and other special functions. There exist important discrep-
ancies between harmonic functions and polynomials in the continuous and discrete
settings, which is part of the reason why the sharp constants for the continuous case
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2 N. ARCOZZI, K. DOMELEVO, AND S. PETERMICHL

cannot be transfered in a straightforward manner to the discrete case. We quote
in that direction the early work of Heilbronn [11] and the more recent works
[13][14][9].

It is our main goal to prove a stocahstic representation formula for a discrete
Hilbert transform. One should keep in mind that there are different naive ways of
defining discrete Hilbert transforms from the space of sequences `2(Z) onto itself.
A first manner found in the litterature is to mimic the continuous Hilbert transform
HR defined on the real line as

∀x ∈ R, HR(f)(x) = − 1

π

∫
f(x− y)

y
dy,

where the integral is to be understood in the principal value sense. Indeed, a naive
discrete counterpart of HR defined thanks to the discrete convolution

HZ : `2(Z)→ `2(Z), ∀x ∈ Z, HZ(f)(x) = − 1

π

∑
z∈Z∗

f(x− z)
z

preserves the idea of a principal value integral by skipping z = 0 in the summation,
but lacks many other important features of the continuous Hilbert transform. For
instance, the operator HR is an isometry in L2(R), an anti-involution, i.e. H2

R
:=

HR ◦ HR = − IdL2(R) and obeys HR ◦
√
−∆x = ∂x. However, HZ above does not

possess these basic properties. One observes that the iterate H2
Z

= HZ ◦ HZ is
far from being neither an isometry of `2(Z) nor an anti-involution. One reason for
that is the fact that the summation in the discrete convolution excludes the integer
z = 0.

In this paper, we take the following route, as done in Lust–Piquard [15].
Modelled after the defining equation for the continuous Hilbert transform, HR ◦√
−∆x = ∂x, let us recall the definition of the discrete Laplacian on Z : we define

the discrete derivatives as

(∂+x f)(x) := f(x+ 1)− f(x), (∂−x f)(x) := f(x)− f(x− 1).

In `2(Z), it follows that (∂±x )? = −∂∓x , ∆x = ∂+x ∂
−
x = ∂−x ∂

+
x = ∂+x − ∂−x , and

(−∆x) = (∂±x )?(∂±x ). Equipped with these discrete operators, another classical
definition for discrete Hilbert transforms is given by

H± ◦
√
−∆x = ∂±x .

Those are the left (resp. right) discrete Hilbert transform H+ (resp. H−), most
often used when defining Riesz transforms on discrete groups (see Lust–Piquard
[15] for more details and applications to the discrete Riesz vector). Through explicit
and simple calculations, we are going to see in the next section that

H+H− = H−H+ = − Id, ‖H±‖`2(Z)→`2(Z) = 1

and that the kernels of these operators H± are

− 1

π

1

n± 1/2

respectively.
The Fourier multiplier of HR is constant on positive and negative frequencies

respectively. This is a feature the operators H± lack. In fact, these operators have
Fourier multipliers that are a modulation of the square wave function.
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STOCHASTIC REPRESENTATION OF A DISCRETE HILBERT TRANSFORM 3

As mentioned earlier, another important and meaningful role is played by the
interplay of HR and harmonic conjugate functions. If uf is the Poisson extension
of a function f to the upper half plane and vf the Poisson extension of HRf , then
the pair uf and vf obeys Cauchy-Riemann relations. Using space–time Brownian

motion, Gundy and Varopoulos have identified pairs of martingales Mf
t and

MHRft that are orthogonal and have differential subordination. In fact, in their

formula, MHRft is a martingale transform of Mf
t . The discrete counterpart of this

feature of HR is the main focus of our note. Using stochastic integrals driven by
semidiscrete random walks in the (semidiscrete) upper–half space, we will see that
the centered discrete Hilbert transform defined as

(1) H =
1

2
(H+ +H−)

enjoys this stochastic representation. Indeed, we obtain for H certain Cauchy-
Riemann relations and an analog of the Gundy–Varopoulos formula. In fact,

MHft and Mf
t are orthogonal and differentially subordinate with respect to the

sharp bracket 〈·, ·〉.
The main goal of the paper is to prove the following representation formula à la

Gundy–Varopoulos [10]:

Theorem 1. (Stochastic representation) The centered discrete Hilbert trans-
form Hf of a function f ∈ `2(Z) as defined in (1) can be written as the conditional
expectation

∀x ∈ Z, Hf(x) = E(Nf
0 |Z0 = (x, 0))

where Nf
t , −∞ < t 6 0, is a suitable martingale transform of a martingale Mf

t

associated to f , and Zt is a suitable semidiscrete random walk on the semidiscrete
upper–half space Z×R+.

Outline of the paper. The next section is devoted to a few basic properties
of the discrete hilbert transforms mentionned above. Section 3 provides semidis-
crete Poisson extensions, weak formulations and semidiscrete Cauchy–Riemann
relations. We introduce the relevant stochastic integrals, martingale transforms
and quadratic covariations in Section 4. Finally, we prove the representation à la
Gundy–Varopoulos of the centered discrete Hilbert transform in Section 5.

2. Basic properties

Let F be the discrete fourier transform

F : `2(Z) −→ L2

(]
−1

2
,

1

2

[)
F(f)(ξ) := f̂(ξ) =

∑
x∈Z

f(x)e−i2πxξ

with Fourier inverse

F−1 : L2

(]
−1

2
,

1

2

[)
−→ `2(Z)

F−1(f̂)(x) =

∫ 1/2

−1/2
f̂(ξ)e+i2πxξdξ
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4 N. ARCOZZI, K. DOMELEVO, AND S. PETERMICHL

Through explicit and simple calculations, we are going to see that

Proposition 1. (Equivalent definitions of H±)

(2) Ĥ±(ξ) = e±iπξ
sin(πξ)

| sin(πξ)|
= eiπξ SQ(πξ)

(3) H±f(x) = − 1

π

∑
z∈Z

f(x− z)
z ± 1

2

As a consequence, the reader may check that we also have the following proper-
ties,

Proposition 2. (Basic properties) The discrete Hilbert transforms H± obey the
following analogs of the continuous Hilbert transform

(4) ∀f, g ∈ `2(Z), (H±f, g)`2(Z) = −(f,H∓g)`2(Z), i.e.(H±)? = −H∓

(5) H+H− = H−H+ = − Id

(6) H±H± = −S±1 Id

(7) ‖H±‖`2(Z)→`2(Z) = 1

where S+1 (resp. S−1) is the right (resp. left) shift operator (S±1f)(x) = f(x∓ 1).

Proof. (of Proposition 1) One has succesively

∂̂±x (ξ) = e±i2πξ − 1 = 2ie±iπξ sin(πξ)

∆̂x(ξ) = −4 sin2(πξ)√̂
−∆x(ξ) = 2| sin(πξ)|

Ĥ±(ξ) = ie±iπξ
sin(πξ)

| sin(πξ)|
=: ieiπξ SQ(πξ).

Now, computing the Fourier transform of the discrete kernel, we check

∑
y∈Z
− 1

π

1

y + 1
2

e−2πiyξ = − 2

π

∑
y

e−i(2y+1)
ξ
2

2y + 1
e2πi

ξ
2

= − 2

π
ieπiξ

∑
m

sin
(
−2π(2y + 1) ξ2

)
2y + 1

= − 4

π
ie2πi

ξ
2
∑
m>0

sin
(

2π(2y + 1)
(
− ξ2
))

2y + 1

= −ieπiξ SQ

(
−πξ

2

)

= ieπiξ
sin(πξ)

| sin(πξ)|
,
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STOCHASTIC REPRESENTATION OF A DISCRETE HILBERT TRANSFORM 5

where we used the Fourier transform of the square wave function

SQ(t) =
4

π

∞∑
n=0

sin
(
2π
T (2n+ 1)t

)
2n+ 1

.

Similarly, the symbol of H− is ie−πiξ sin(πξ)
| sin(πξ)| = −ie−πiξ SQ

(
− ξ2
)

�

Finally, for the centered discrete Hilbert transform, one has

H ◦H = [(H+)2 + 2(H+)(H−) + (H−)2]/4(8)

= [(H+)2 + 2(H+)(H−) + (H−)2]/4

= [(H+)S+(H−) + 2(H+)(H−) + S−(H+)(H−)]/4

= −
(

1

4
S− +

1

2
Id +

1

4
S+

)
,

where we recognize a smoothed version of minus the identity.

3. Semi-discrete Poisson extensions and weak formulations

Semidiscrete Poisson extensions. Defining the selfadjoint operator A as the
square root A =

√
−∆x, we set Py = e−yA, y ∈ [0,∞[. The Poisson extension of

a function f ∈ `2(Z) is the function f(y, x) := (Pyf)(x) defined on R+ × Z. Note
that we use the same name for f and it’s Poisson extension. It follows that the
function f(y, x) satisfies in (0,∞)× Z

∂yf(x, y) = −Af(x, y), ∂2yf(x, y) = A2f(x, y) = −∆xf(x, y)

that is f(x, y) is harmonic in (0,∞)× Z:

(∆y + ∆x)f = 0.

For any f and g in `2(Z), we note

(f, g)`2(Z) :=
∑
x∈Z

f(x)g(x)

the scalar product of `2(Z). We will often omit the subscript in the scalar product
and write (f, g) instead of (f, g)`2(Z). Moreover we have

∀f, g ∈ `2(Z), (−∆xf, g) := ((∂±x )?(∂±x )f, g) = (∂±x f, ∂
±
x g)

and also

∀f, g ∈ `2(Z), (−∆xf, g) = (A2f, g) = (Af,Ag) = (∂yf, ∂yg)

We will collect below all the derivations in the 4–vector

∇y,x = (∂y, ∂
+
x , ∂y, ∂

−
x )?.

Notice that we repeat twice the derivation ∂y. The reasons for that will become
clear later.

Theorem 2. (Weak formulation of the identity operator) Assume f and g
in `2(Z). Let I denote the identity operator. We have the Littlewood–Paley identity

(If, g) =

∫ ∞
y=0

∑
x∈Z

(∇x,yf(x, y),∇x,yg(x, y))ydy
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6 N. ARCOZZI, K. DOMELEVO, AND S. PETERMICHL

Proof. Notice first that for any functions f and g in `2(Z), we have, using succes-
sively discrete integration by parts, and the definition of A,

(−∆xf, g) := ((∂±x )?(∂±x )f, g) = (∂±x f, ∂
±
x g)

= (A2f, g) = (Af,Ag)

In the particular case where both f = f(x, y) and g = g(x, y) are Poisson extensions,
then

(Af,Ag) = (∂yf, ∂yg)

To summarize, when the functions f(y) = Pyf and g(y) = Pyg are Poisson exten-
sions, we have in the upper half space

(−∆xf(y), g(y)) = (∂±x f(y), ∂±x g(y)) = (∂yf(y), ∂yg(y)) = (Af(y), Ag(y)).

But for any function F (y) smooth enough and decaying at infinity, we have

F (0) =

∫ ∞
0

F ′′(y)ydy

Applying this identity to F (y) = (f(y), g(y))`2(Z) yields,

(f, g)`2(Z) =

∫ ∞
0

{(∂2yf, g) + 2(∂yf, ∂yg) + (f, ∂2yg)}ydy

= 4

∫ ∞
0

(∂yf, ∂yg)ydy

= 4

∫ ∞
0

(∂+x f, ∂
+
x g)ydy = 4

∫ ∞
0

(∂−x f, ∂
−
x g)ydy

=

∫ ∞
0

{(∂yf, ∂yg) + (∂+x f, ∂
+
x g) + (∂yf, ∂yg) + (∂−x f, ∂

−
x g)}ydy

=

∫ ∞
0

(∇y,xf,∇y,xg)ydy,

as announced. �

Cauchy–Riemman relations and weak formulation.

Theorem 3. (Cauchy-Riemann relations) Let f and g in `2(Z). Let Hf(y, x)
denote the Poisson extension of Hf(x), and f(y, x) that of f(x). We have the
semidiscrete Cauchy–Riemman relations, for all (y, x) ∈ R+ × Z,

∂yH±f = −∂∓x f, ∂±x H±f = ∂yf,

which implies for the centered discrete Hilbert transform, for all (y, x) ∈ R+ × Z,

∂yHf = −∂0xf, ∂0xHf =

(
1

4
S− +

1

2
Id +

1

4
S+

)
∂yf.

Theorem 4. (Weak formulation for the discrete Hilbert) Let Hf denote
the centered discrete Hilbert transform of f . Let f := f(y, x) denote the Poisson
extension of f . Let g := g(y, x) denote the Poisson extension of a test function g.
We have the weak formulation:

(Hf, g) =

∫ ∞
0

(A∇y,xf,∇y,xg)ydy
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STOCHASTIC REPRESENTATION OF A DISCRETE HILBERT TRANSFORM 7

where A ∈ R4×4 is the matrix

A =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 .

It is important to observe that the weak formulation involves the orthogonal
matrix A such that A2 = − Id. This does not mean that the centered discrete
Hilbert transform H is an antiinvolution, as is clear from Theorem 3 and equation
(8).

Proof. The semidiscrete Poisson extension convenient for us has up to normalization
the kernel

Py(x) =

∫ 1

0

e−2πiξxe−2| sin(πξ)|ydξ

Let us write for convenience u the Poisson extension of f

u(x, y) =

∫ 1

0

f̂(ξ)e−2πiξxe−2| sin(πξ)|ydξ

and v± the Poisson extension of H±f

v±(x, y) =

∫ 1

0

Ĥ±f(ξ)e−2πiξxe−2| sin(πξ)|ydξ

= −i

∫ 1

0

e±πiξ
sin(πξ)

| sin(πξ)|
f̂(ξ)e−2πiξxe−2| sin(πξ)|ydξ

Observe that

∂+x u(x, y) =

∫ 1

0

f̂(ξ)(e−2πiξ(x+1) − e−2πiξx)e−2| sin(πξ)|ydξ

= −2i

∫ 1

0

e−πiξ sin(πξ)f̂(ξ)e−2πiξxe−2| sin(πξ)|ydξ

While

∂−x u(x, y) =

∫ 1

0

f̂(ξ)(e−2πiξx − e−2πiξ(x−1))e−2| sin(πξ)|ydξ

= −2i

∫ 1

0

eπiξ sin(πξ)f̂(ξ)e−2πiξxe−2| sin(πξ)|ydξ

Similarly

∂+x v
+(x, y) = −2

∫ 1

0

| sin(πξ)|f̂(ξ)e−2πiξxe−2| sin(πξ)|ydξ

and

∂−x v
−(x, y) = −2

∫ 1

0

| sin(πξ)|f̂(ξ)e−2πiξxe−2| sin(πξ)|ydξ

The continuous derivatives in the other variable are

∂yu(x, y) = −2

∫ 1

0

| sin(πξ)|f̂(ξ)e−2πiξxe−2| sin(πξ)|ydξ
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8 N. ARCOZZI, K. DOMELEVO, AND S. PETERMICHL

and

∂yv
±(x, y) = 2i

∫ 1

0

e±πiξ sin(πξ)f̂(ξ)e−2πiξxe−2| sin(πξ)|ydξ

This gives the following Cauchy Riemann equations

∂yv
+ = −∂−x u,

∂yv
− = −∂+x u

but

∂yu = ∂+x v
+ = ∂−x v

−.

Let us note ug the Poisson extension of a test funciton g and accordingly u = uf

the Poisson extension of f . We have successively

(H+f, g) = 2

∫ ∞
0

(∂yv
+(y), ∂yu

g(y))ydy + 2

∫ ∞
0

(∂+x v
+(y), ∂+x u

g(y))ydy

= 2

∫ ∞
0

(−∂−x uf (y), ∂yu
g(y))ydy + 2

∫ ∞
0

(∂yu
f (y), ∂+x u

g(y))ydy

(H−f, g) = 2

∫ ∞
0

(−∂+x uf (y), ∂yu
g(y))ydy + 2

∫ ∞
0

(∂yu
f (y), ∂−x u

g(y))ydy

(Hf, g) =

∫ ∞
0

(−∂−x uf (y), ∂yu
g(y))ydy +

∫ ∞
0

(∂yu
f (y), ∂+x u

g(y))ydy

+

∫ ∞
0

(−∂+x uf (y), ∂yu
g(y))ydy +

∫ ∞
0

(∂yu
f (y), ∂−x u

g(y))ydy

=

∫ ∞
0



−∂−x
∂y

−∂+x
∂y

uf (y),


∂y
∂+x
∂y
∂−x

ug(y)

 ydy

=

∫ ∞
0




0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0




∂y
∂+x
∂y
∂−x

uf (y),


∂y
∂+x
∂y
∂−x

ug(y)

 ydy

This concludes the proof of Theorems 3 and 4. �

4. Stochastic representations

Semidiscrete random walks. LetNt be a càdlàg Poisson process with parameter
λ. Let (Tk)k∈N be the instants of jumps. Let (εk)k∈N be a sequence of independent
Bernouilli variables,

∀k, P(εk = 1) = P(εk = −1) = 1/2.

This allows us to define the random walk Xt ∈ Z as the compound Poisson process
(see e.g. Protter [21], Privault [19][20])

X0 ∈ Z, Xt =

Nt∑
k=1

εk
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STOCHASTIC REPRESENTATION OF A DISCRETE HILBERT TRANSFORM 9

Let Yt be a standard onedimensional brownian process started at Y0. We define
the semidiscrete random walk Zt as Zt := (Yt,Xt) ∈ R+ × Z, i.e.

Z′ = (Y′,X′), dZt = (dBt, εNt
dNt)

Stochastic integrals. Let f defined on R+ × Z be a smooth function. We have
the Itô formula

f(Zt)− f(Z0) =

∫ t

0

∂0xf(Zs−)dXs +

∫ t

0

1

2
∂2xf(Zs−)d(Ns − s)

+

∫ t

0

∂yf(Zs−)dYs +

{
1

2

∫ t

0

(∂2xf + ∂2yf)(Zs−)ds

}
This formula can be derived thanks to telescopic sums involving jump times. We
refer to Privault [19][20] for more details.

Quadratic covariation. Let f and g be two semidiscrete harmonic functions in
R

+
? × Z, that is

∂2xf + ∂2yf = ∂2xg + ∂2yg = 0 in R
+
? × Z.

We define the corresponding martingales Mf
t := f(Zt) and Mg

t := g(Zt), so that

dMf
t = ∂0xf(Zt−)dXt +

1

2
∂2xf(Zt−)d(Nt − t) + ∂yf(Zt−)dYt

dMg
t = ∂0xg(Zt−)dXt +

1

2
∂2xg(Zt−)d(Nt − t) + ∂yg(Zt−)dYt

It follows that

d[Mf ,Mg]t = ∂0xf(Zt−)∂0xg(Zt−)d[X ,X ]t +
1

4
∂2xf(Zt−)∂2xg(Zt−)d[N ,N ]t

+

(
∂0xf(Zt−)

1

2
∂2xg(Zt−) + ∂0xg(Zt−)

1

2
∂2xf(Zt−)

)
d[X ,N ]t

+∂yf(Zt−)∂yg(Zt−)d[Y,Y]t

=

[
∂0xf(Zt−)∂0xg(Zt−) +

1

2
∂2xf(Zt−)

1

2
∂2xg(Zt−)

]
dNt

+

[
∂0xf(Zt−)

1

2
∂2xg(Zt−) + ∂0xg(Zt−)

1

2
∂2xf(Zt−)

]
dXt

+∂yf(Zt−)∂yg(Zt−)dt

=
1

2
[∂+x f∂

+
x g + ∂−x f∂

−
x g]dNt

+
1

2
[∂+x f∂

+
x g − ∂−x f∂−x g]dXt

+∂yf(Zt−)∂yg(Zt−)dt

= [(∆Xt)+∂+x f∂+x g + (∆Xt)−∂−x f∂−x g]dNt
+∂yf(Zt−)∂yg(Zt−)dt

where (∆X )± := max(0,±∆X ).
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Martingale transform. In order to define a martingale transform Nf
t of Mf

t such

that Nf
t allows us to recover the discrete hilbert transform, we recall that the weak

formulation (9) of Theorem 4 involves the “martingale transform”

∇y,x =


∂−y
∂+x
∂+y
∂−x

 −→ ∇⊥y,x =


−∂−x
∂+y
−∂+x
∂−y

 .

Let us first rewrite the martingale increments in terms of the ∂±x derivatives:

dMf
t = ∂0xf(Zt−)dXt +

1

2
∂2xf(Zt−)d(Nt − t) + ∂yf(Zt−)dYt

=
1

2
∂+x f(Zt−)(dXt + d(Nt − t)) +

1

2
∂−x f(Zt−)(dXt − d(Nt − t))

+
1

2
∂−y f(Zt−)dYt +

1

2
∂+y f(Zt−)dYt.

The Cauchy-Riemann relations therefore suggest to define

dNf
t :=

1

2
∂+y f(Zt−)(dXt + d(Nt − t)) +

1

2
∂−y f(Zt−)(dXt − d(Nt − t))

+
1

2
(−∂−x f)(Zt−)dYt +

1

2
(−∂+x f)(Zt−)dYt

= ∂yf(Zt−)dXt − (∂0xf)(Zt−)dYt

To summarize, let f be harmonic. We have defined Nf
t as the stochastic integral

Nf
t := f(Z0) +

∫ t

0

∂yf(Zs−)dXs − ∂0xf(Zs−)dYs.

It is now easy to estimate the quadratic covariation

d[Mf , Nf ]t = ∂0xf(Zt−)∂yf(Zt−)d[X ,X ]t − ∂yf(Zt−)∂0xf(Zt−)d[Y,Y]t

= ∂0xf(Zt−)∂yf(Zt−)dN 0
t ,

where we note N 0
t := Nt− t the compensated Poisson process, that is a martingale

process.

Notice that Mf
t and Nf

t are not orthogonal martingales with respect to the
bracket multiplication [·, ·]. However, recall that the angular bracket 〈·, ·〉, also
known as the conditional quadratic covariation (see Protter [21]), is the compen-
sator of [·, ·]. But since N 0

t is a martingale, we have for the angular bracket

d〈Mf , Nf 〉t = 0,

that is the martingales Mf
t and Nf

t are orthogonal with respect to the conditional
quadratic covariation.

Similarly, the pairing of Nf
t with a test martingale Mg

t leads to the quadratic
covariation

d[Nf ,Mg]t = ∂yf(Zt−)

[
∂0xg(Zt−) + (∆tX )

1

2
∂2xg(Zt−)

]
dNt

−∂0xf(Zt−)∂yg(Zt−)dt

= ∂yf(Zt−)[(∆tX )+(∂−x g)(Zt−) + (∆tX )−(∂−x g)(Zt−)]dNt
−∂0xf(Zt−)∂yg(Zt−)dt,
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and the conditional quadratic covariation

d〈Nf ,Mg〉t = ∂yf(Zt−)

[
(∂0xg)(Zt−) + (∆tX )

1

2
(∂2xg)(Zt−)

]
dNt

−∂0xf(Zt−)∂yg(Zt−)dt

= ∂yf(Zt−)[(∆tX )+(∂−x g)(Zt−) + (∆tX )−(∂−x g)(Zt−)]dNt
−∂0xf(Zt−)∂yg(Zt−)dt

= ∂yf(Zt−)

[
1

2
∂−x g(Zt−) +

1

2
∂−x g(Zt−)

]
dt

−∂0xf(Zt−)∂yg(Zt−)dt

= {∂yf(Zt−)∂0xf(Zt−)− ∂0xf(Zt−)∂yg(Zt−)}dt.

5. Proof of Theorem 1

It remains to prove the representation formula stated in Theorem 1. Equipped
with the martingale representations of the previous sections, it suffices to follow the
lines of Gundy–Varopoulos [10] and Arcozzi [1]. For that, let (Zt)−∞<t60 be
the so–called background noise. Those are semidiscrete random walks starting at
infinity in the upper–half space Z×R+ and stopped at time t = 0 when reaching

the boundary Z. Let f defined on Z, Mf
t := (Ptf)(Zt) the associated martingale,

and Nf
t the corresponding martingale transform as defined previously. Finally,

introduce the projection operator

T f(x) := E(Nf
0 |Z0 = x).

It follows that for any test function g defined on Z, and the associated martingale
Mg
t , we have

(T f, g)`2(Z) =
∑
x

T f(x)g(x) =
∑
x

E(Nf
0 |Z0 = x)g(x) =

∑
x

E(Nf
0 |Z0 = x)Mg

0

=
∑
x

E(Nf
0M

g
0 |Z0 = x) =

∑
x

E

(∫ 0

−∞
d[Nf ,Mg]t | Z0 = x

)
=

∑
x

E

(∫ 0

−∞
{∂yf(Zt−)∂0xf(Zt−)− ∂0xf(Zt−)∂yg(Zt−)}dt | Z0 = x

)
=

∑
x

∫ 0

−∞
{∂yf(y, x)∂0xf(y, x)− ∂0xf(y, x)∂yg(y, x)}2ydy

= (Hf, g)

where we used the fact that Mg
0 depends only on Z0 but not on the trajectory,

where we used the formula of the previous section for the quadratic covariations,
and finally the fact that the density of the background noise Zt in the upper half
space is the same as in the continuous setting, equal to 2ydy (see [10]).
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Inst. Math. Toulouse, Université Paul Sabatier, Toulouse, France
E-mail address: komla.domelevo@math.univ-toulouse.fr

Inst. Math. Toulouse, Université Paul Sabatier, Toulouse, France
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