We propose to rely on the wave equation for the detection of repeatable keypoints invariant up to image scale and rotation and robust to viewpoint variations, blur, and lighting changes. The algorithm exploits the properties of local spatial–temporal extrema of the evolution of image intensities under the wave propagation to highlight salient symmetries at different scales. Although the image structures found by most state-of-the-art detectors, such as blobs and corners, occur typically on highly textured surfaces, salient symmetries are widespread in diverse kinds of images, including those related to poorly textured objects, which are hardly dealt with by current pipelines based on local invariant features. The impact on the overall algorithm of different numerical wave simulation schemes and their parameters is discussed, and a pyramidal approximation to speed-up the simulation is proposed and validated. Experiments on publicly available datasets show that the proposed algorithm offers state-of-the-art repeatability on a broad set of different images while detecting regions that can be distinctively described and robustly matched.

Keypoint detection by wave propagation

Salti, Samuele;Lanza, Alessandro;Di Stefano, Luigi
2021

Abstract

We propose to rely on the wave equation for the detection of repeatable keypoints invariant up to image scale and rotation and robust to viewpoint variations, blur, and lighting changes. The algorithm exploits the properties of local spatial–temporal extrema of the evolution of image intensities under the wave propagation to highlight salient symmetries at different scales. Although the image structures found by most state-of-the-art detectors, such as blobs and corners, occur typically on highly textured surfaces, salient symmetries are widespread in diverse kinds of images, including those related to poorly textured objects, which are hardly dealt with by current pipelines based on local invariant features. The impact on the overall algorithm of different numerical wave simulation schemes and their parameters is discussed, and a pyramidal approximation to speed-up the simulation is proposed and validated. Experiments on publicly available datasets show that the proposed algorithm offers state-of-the-art repeatability on a broad set of different images while detecting regions that can be distinctively described and robustly matched.
Salti, Samuele; Lanza, Alessandro; Di Stefano, Luigi
File in questo prodotto:
File Dimensione Formato  
20_SPIE_JEI_WADE.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/790768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact