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Abstract. This paper proposes to rely on the wave equation for the detection of repeatable keypoints invariant up
to image scale and rotation and robust to viewpoint variations, blur and lighting changes. The algorithm exploits
the properties of local spatial-temporal extrema of the evolution of image intensities under the wave propagation to
highlight salient symmetries at different scales. While the image structures found by most state-of-the-art detectors,
such as blobs and corners, occur typically on highly textured surfaces, salient symmetries are widespread in diverse
kinds of images, including those related to poorly textured objects, which are hardly dealt with by current pipelines
based on local invariant features. The impact on the overall algorithm of different numerical wave simulation schemes
and their parameters is discussed, and a pyramidal approximation to speed-up the simulation proposed and validated.
Experiments on publicly available datasets show that the proposed algorithm offers state-of-the-art repeatability on a
broad set of different images while detecting regions that can be distinctively described and robustly matched.
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1 Introduction

Partial Differential Equations (PDEs) are a common tool in the field of image processing. Their

interpretation as Euler-Lagrange solutions of variational optimization problems provides an ele-

gant unified framework for diverse but related basic problems such as denoising, deblurring and

inpainting. A variety of PDEs are currently being used and provide state-of-the-art approaches

for these problems. The most popular is certainly the heat or diffusion equation, but other non-

linear second-order,1 fourth-order2 and, very recently, fractional-order PDEs3 have been deployed

for image processing. Although the great majority of these equations are parabolic, researchers

are also investigating on the use of hyperbolic equations, such as shock-filters4 or the telegrapher

equation.5

PDEs are notably less investigated in image analysis and computer vision problems, one promi-

nent exception being the linear scale–space based on the heat equation deployed for scale-invariant
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keypoint detection. Invariant keypoint detection and matching is a fundamental problem in Com-

puter Vision, with applications in image retrieval, object detection and recognition, object and

camera tracking, camera calibration, and image registration, among the others. In this paradigm,

the image content is summarized by a set of small, possibly overlapping representative regions,

which are repeatably found at points corresponding to the same world points regardless of distor-

tions due to changes in the acquisition process, the illumination or the viewpoint. Corresponding

features can then be identified by looking for the nearest neighbor in the space of descriptions of

the regions, providing both a sparser and more robust representation of the image content.

The scale–space theory was developed in seminal works by Witkin6 and Koenderink,7 and

later popularized by the automatic scale selection principle proposed by Lindeberg.8 Lindberg’s

scale–normalized derivatives provide the theoretical foundations for the Differences-of-Gaussians

(DoG) keypoint detector,9 arguably among the most influential contribution in the field of computer

vision. However, other kinds of PDEs are unexplored in problems related to detection and/or

description of local invariant features. Instead, in work dating back to the 90’s,10–12 the wave

equation was used for skeletonization of binary silhouettes and detection of circular objects, due

to its ability of eliciting the symmetry set. More recently, PDEs other than the heat equation have

been used for description of global silhouettes.13

In this paper we investigate the use of other PDEs than the heat equation in image analysis

from the modern perspective of local invariant features. In particular, we focus on the problem

of invariant keypoints detection and advocate the use of the wave equation. When applied to

images, the wave equation exhibits the ability to highlight symmetries at different scales. Salient

symmetries are likely to be found in a large range of images, and in particular in those related to

man-made untextured objects, where the established recognition paradigm based on matching local
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features is prone to fail due to scarcity of cues, especially when occlusions need to be withstood.

Nevertheless, many salient symmetries arise in textured objects alike. Thus, the proposed approach

qualifies as a general tool for repeatable salient regions detection. A preliminary version of this

study was published in.14

2 Related work

There is a rich literature on the topic of keypoint detection, as well as several surveys and evalu-

ations such as,15–18 and a review on this broad topic is beyond the scope of this paper. We briefly

cite here the main proposals and refer the interested reader to the above mentioned surveys.

The first proposals that can be defined as interest point detectors are the Morevec and Harris

corner detectors,19, 20 invariant up to rotations. Scale invariance by automatic scale selection was

introduced and deeply studied by Lindberg,8 and his ideas fostered the development of several

scale-invariant detectors, such as the Difference of Gaussians9 and the FastHessian blob detec-

tors.21 The Harris corner detector was later extended to scale and affine invariance by Mikolajczyk

and Schmid.22 A widely used affine invariant region detector is the Maximally Stable Extremal Re-

gions algorithm (MSER) by Matas et al.23 A family of corner detectors focused on efficiency are

based on the Accelerated Segment Test (AST) by Rosten and Drummond,24 i.e. a set of intensity

tests to be performed on a Bresenham’s circle. This family includes the machine-learning based

FAST detector in,25 where the order of the tests is learned in a tree from a training set, later im-

proved in;26 the AGAST detector,27 where two trees are used to classify separately homogeneous

and textured regions; the BRISK28 and ORB29 detectors, which endow the FAST approach with

scale and rotation invariance, respectively.

More recent proposals include: the SFOP detector,30 which proposes a scale-selection mecha-
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nism for junction-type features; the SIFER detector,31 which uses the Cosine Modulated Gaussian

filter and trades rotation invariance for higher scale localization accuracy and resilience to blur and

lighting changes; KAZE features32 and their faster extension Accelerated KAZE,33 which create

the scale-space by using non-linear diffusion filters to make blurring locally adaptive and retain

object boundaries.

Surprisingly, there has been relatively little work on the use of symmetry as a cue to detect and

describe local features. The most recent contributions on this topic are due to Maver34 and Haugge

et Snavely.35 In particular. the latter paper proposes a detector-descriptor pair relying on a local

symmetry score computed densely on the image and across scales. Unlike our proposal, though,

their formalization of symmetry is specifically engineered to capture effectively the salient regions

likely to be found in architectural images and relies on the classic Gaussian scale–space rather

than our novel formulation grounded on the wave PDE. Earlier related works such as36, 37 focus

on detecting interest points featuring radial symmetries (e.g. eye centres) but are neither really

conceived nor evaluated as local invariant features for general purpose image matching tasks.

3 Wave-based Detection

In this section, we illustrate in detail the proposed keypoint detector. In particular, in Sec. 3.1 we

present the continuous PDE model based on the wave equation and in Sec. 3.2 we show the scale

covariant properties of such model. Sec. 3.1 and 3.4 are dedicated to the numerical solution of

the proposed hyperbolic initial boundary-value problem. In particular, Sec. 3.1 presents a class of

compact (explicit and implicit) finite difference schemes, which efficiently compute a numerical

solution of the problem; in Sec. 3.4 we analyze stability and numerical dispersion of the consid-

ered schemes, with particular attention to isotropicity of the schemes which is crucial for rotation
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invariance of the detector. Finally, in Sec. 3.5 we illustrate the procedure used for detecting and

validating the spatio-temporal extrema of the computed numerical solution.

3.1 The wave equation

The wave equation is a well-known linear second-order hyperbolic partial differential equation. It

is used in several fields of physics that need to model waves propagating through time and space,

such as in acoustics, electromagnetism and fluid dynamics.

The initial boundary value problem modeling wave propagation that we use is as follows:





utt(x, y; t) = c2∇2u(x, y; t) (x, y; t) ∈ Ω× R+

u(x, y; 0) = I(x, y) (x, y) ∈ Ω̄

ut(x, y; 0) = 0 (x, y) ∈ Ω̄

ut(x, y; t) = c un(x, y; t) (x, y; t) ∈ ∂Ω× R+

(1)

where c ∈ R+ is the wave speed, I is the image, Ω̄ = (Ω ∪ ∂Ω) ⊂ R2 is the (rectangular)

image domain, n is the inward pointing unit normal to the image domain boundary ∂Ω. The

solution u(x, y; t) models the height of the wave, i.e. the graylevel intensities at each space-time

location. ∇2 is its 2-D spatial Laplacian operator, ut and utt are its first-order and second-order

partial derivatives along the time dimension, while un(x, y; t) is the partial derivative in space

along direction n. The initial conditions, defined by the second and third equations, are trivial.

The boundary conditions, defined by the fourth equation, represent the first order highly absorbing

local approximation of the perfectly absorbing boundary conditions,38 which are inherently non-

local in space and time, i.e. to advance one time level at a single point they require information over
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Fig 1 (a) initial image I; (b) analytical solution of the wave equation at the circle center.

the entire boundary from all previous times. Absorbing boundary conditions have been chosen to

avoid reflections of waves at image boundaries, that would cause unwanted interferences. The

selected initial and boundary conditions render problem (1) well-posed.38

3.2 Scale covariant analysis

The stack of images obtained by letting the image intensities evolve under the process simulated

by the wave equation (1) enables a multi–scale analysis of the input image. In particular, as shown

in,10 by simulating wave propagation on images it is possible to detect circles of varying radii. This

derives directly from Huygens’ principle of superposition: if we consider a circle as depicted in Fig.

1, and interpret the intensities as the wave height at time 0, then the wave front after the wave has

traveled a distance equal to the radius of the circle is given by the sum of circular waves originating

from each point on the circle edge. Therefore, the wave propagation attains an extremum at the

center of the circle at a time that is proportional to the scale of the original circle.

This is confirmed by the analytical solution of the equation when I(x, y) represents a uniform
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circle of radius r on a uniform background, as depicted in Fig. 1. In such a case, letting k1 and k2

denote, respectively, the greylevel inside and outside the circle, the solution u(x, y; t) restricted to

the circle center (x0, y0), is given by

u(x0, y0; t) =





k1 t ≤ r
c

k1 + (k2−k1)√
1−( r

ct
)2

t > r
c

(2)

The plot in Fig. 1 (b) shows that the function exhibits a vertical asymptote in the continuous

domain at a time proportional to the radius of the circle: having set the wave velocity equal to 1,

the asymptote shows up after 50 time intervals, which is exactly the radius in pixels of the circle.

Detection of circle centers is actually a particular case of the more general property of wave

propagation of eliciting the symmetry set of curves.12 The symmetry set is defined as the locus of

centers of circles bi-tangent to a curve and can be detected by summing u(x, y; t) over t into an

accumulator and inserting the local spatial extrema of the accumulator into the set at each iteration.

Such an approach detects all kind of symmetries, regardless of their saliency, and it is effective to

skeletonize binary shapes. Differently, to define repeatable keypoints, we propose to consider

only the points of locally maximal symmetry, which correspond to the shock points of the wave

propagation (see13 for a deep analysis of shock points). They can be detected by analyzing the

solution u(x, y; t) of (1).

Given the property of u(x, y; t) to enable scale-covariant analysis of images, and slightly abus-

ing the terminology, we may think of it as a wave–based scale–space, although this one-parameter

family of signals does not satisfy the classical scale–space axioms.8
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3.3 Numerical solutions of the wave equation

To solve (1) by numerical simulation several finite difference schemes, both explicit and implicit,

may be deployed. Here we restrict ourselves to describe and evaluate only compact schemes, i.e.

schemes with stencils not wider than 3 nodes in the discrete space-time domain. By defining the

regular space-time domain mesh yi = i∆y, xj = j∆x, tn = n∆t and using the classical centered

finite difference operators

δ2
xu

n
i,j ≡ uni,j+1 − 2uni,j + uni,j−1 (3)

δ2
yu

n
i,j ≡ uni+1,j − 2uni,j + uni−1,j (4)

δ2
t u

n
i,j ≡ un+1

i,j − 2uni,j + un−1
i,j (5)

to approximate second order derivatives, where uni,j ' u(xj, yi, t
n), a family of compact schemes

approximating the solution can be defined as follows:39

[
1 + a

(
δ2
x + δ2

y

)
+ a2δ2

xδ
2
y

]
δ2
t u

n
i,j = λ2

[(
δ2
x + δ2

y

)
+ bδ2

xδ
2
y

]
δ2
t u

n
i,j (6)

where λ = c∆t/∆x ∈ R+ is the Courant number, and a ∈ [−1
4
; 1

4
], b ∈ [0; 1

2
] are numerical

parameters. The resulting scheme is explicit for a = 0, implicit otherwise.

For implicit schemes, (6) does not represent the most general family of solutions, but the family

of those that can be solved efficiently with the Alternating Direction Implicit (ADI) method,40

which allows to use the Thomas algorithm for efficient matrix inversion, whose complexity is

O(N) instead of O(N3). The Thomas algorithm works with tridiagonal matrices. To obtain such

matrices, the general formulation is split into two equations, which are solved sequentially as
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follows:

(
1 + aδ2

x

)
un+1∗

i,j =
λ2

a

[
−1 + (a− b) δ2

y

]
uni,j (7)

(
1 + aδ2

y

)
δ2
t u

n
i,j =un+1∗

i,j +
λ2

a

(
1 + bδ2

y

)
uni,j . (8)

By varying a and b, different implicit schemes are obtained. According to the analysis presented

in,41 notable special cases can be singled out. In the following, we restrict ourselves to the values

of a and b that result in the so called Maximally Flat Isotropic (MFI) scheme, as it is that for which

the difference between axial and diagonal relative phase velocity is maximally flat, and should

therefore offer the best rotation invariance. Values of a and b for MFI and the schemes that will be

presented below are reported in Tab. 1.

For explicit schemes, the general solution becomes:

δ2
t u

n
i,j =λ2

[(
δ2
x + δ2

y

)
+ bδ2

xδ
2
y

]
δ2
t u

n
i,j (9)

which yields the following time-marching scheme:

un+1
i,j =λ2




b 1− 2b b

1− 2b 4b− 2 1− 2b

b 1− 2b b



⊗ uni,j − un−1

i,j (10)

where ⊗ represents convolution. Explicit solutions correspond to different approximations of the

Laplacian operator. Hence, for explicit schemes, b controls the interpolation between the two
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extreme of the spectrum of explicit solutions, where only four of the eight neighbors of a node are

actually used: the Standard Leapfrog scheme (SLF), obtained with b = 0, which uses horizontal

and vertical neighbors only, and the Rotated Leapfrog (RLF) scheme, obtained with b = 1
2
, which

uses the neighbors along the diagonals. Here we consider the two notable interpolation highlighted

in,41 namely the INT 1/4 and INT 1/6 schemes, which correspond to setting b = 1/4 and b = 1/6,

respectively, as they are the most promising as far as rotation invariance is concerned.

The most costly operation in the update equation (10) is convolution. It can be made less

demanding by modifying the filter to be linearly separable, so that it requires two convolutions

with 3 × 1 kernels only. Though the 3 × 3 kernel is not directly separable, it becomes such as we

move part of the contribution of the central pixel outside of the convolution. One can readily verify

that the following equation

un+1
i,j =




λ
√
b

λ1−2b√
b

λ
√
b



⊗
([
λ
√
b λ1−2b√

b
λ
√
b

]
⊗ uni,j

)
+

(
2− λ2

b

)
uni,j − un−1

i,j (11)

is equivalent to (10).

The implicit and explicit schemes provide the numerical approximations uni,j ' u(xi, yj, t
n) of

the solution at the inner mesh nodes, i.e. for (i, j, n) ∈ {2, . . . , w − 1} × {2, . . . , h− 1} × {2, . . .}.

To compute the solution at the inner nodes for the first iteration, we exploit the initial condition

on the time partial derivative, whose discretization with central differences yields u1
i,j − u−1

i,j = 0.
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Table 1 Numerical schemes parameters for wave simulation. λS and λNS refer to the Courant number used to test
schemes on the stability bound (S) and in the middle of their stability range (NS).

Scheme a b Stability λS λNS
INT (1/4) 0 1

4
λ ≤ 1 1 1

2

INT (1/6) 0 1
6

λ ≤
√

3
2

√
3

2

√
2

2

MFI 1
4
− 1

2
√

3
1
6

λ ≤ 1 1 1
2

This, in turn, leads to the following solution for the implicit case

(
1 + aδ2

x

)
u1∗

i,j =
λ2

a

[
−1 + (a− b) δ2

y

]
u0
i,j (12)

(
1 + 2aδ2

y

)
u1
i,j =u1∗

i,j +

(
1 +

λ2

a
+ (a+

bλ2

a
)δ2
y

)
u0
i,j (13)

and the explicit case

u1
i,j =

1

2

(




λ
√
b

λ1−2b√
b

λ
√
b



⊗
([
λ
√
b λ1−2b√

b
λ
√
b

]
⊗ u0

i,j

)
+

(
2− λ2

b

)
u0
i,j

)
. (14)

As for the boundary nodes, we exploit the boundary conditions, whose discretization with

forward differences along the time and normal-to-the-boundary axis yields the following solution

for both kinds of numerical schemes:

un+1
i,1 = uni,1 + λ(uni,2 − uni,1) (15)

un+1
1,j = un1,j + λ(un2,j − un1,j) (16)

un+1
i,w = uni,w + λ(uni,w−1 − uni,w) (17)

un+1
h,j = unh,j + λ(unh−1,j − unh,j) . (18)
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Fig 2 Numerical dispersion. First row: INT 1/4, INT 1/6 and MFI with Courant number on the stability bound. Second
row: INT 1/4, INT 1/6 and MFI with smaller Courant number.

3.4 Numerical stability and dispersion

Numerical stability of the reviewed schemes depends on the Courant number λ. As, in the case of

images, ∆x = ∆y is given by the pixel side, the stability constraint actually affects the product

c∆t i.e. the space traveled by the wave in one unit of discretized time, rather than the two constants

individually. Different schemes have different bounds on this parameter, as reported in Tab. 1. To

vary the Courant number within its stability bounds we opted to keep the velocity c constant to
√

2
2

and vary ∆t accordingly.

Unfortunately, discretization of the wave propagation is prone to quite significant numerical

errors, mainly due to numerical (or grid) dispersion.42 Numerical dispersion stems from the nu-

merical approximation of derivatives and operators, which in turn lets different frequencies in the

original image travel with different actual speeds during the numerical simulation. Therefore, a

useful measure of numerical dispersion in wave simulations is the ratio of the effective numerical
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wave speed ĉ over the real wave speed c, i.e. the relative phase velocity. As it can be observed

in Fig. 2, different numerical schemes let the wave travel with different relative phase velocities

along different directions, and dispersion is also affected by the Courant number resulting from

the choice of ∆t. As numerical dispersion cannot be eliminated, the preferable dispersion in our

context is that distorting the original signal isotropically along all directions, so that rotation in-

variance of the detector is mostly preserved. We can clearly see that by using a Courant number

not at the stability bound, all the schemes become more isotropic than their counterpart at the sta-

bility bound. This is even more evident for the INT 1/4 scheme, which we originally used in the

preliminary version of this work.14 The higher isotropy comes at the cost of a lower relative phase

velocity. The INT 1/6 scheme exhibits the smallest rise in numerical dispersion when the schemes

are not run at the stability bound.

For every scheme, there are some frequencies that are not well propagated, i.e. whose rela-

tive phase velocity is low. Their number is even higher in isotropic schemes. In particular, for

every scheme we can compute a cut-off frequency for each direction, above which waves be-

come evanescent and propagation is not correct. This can be clearly seen in Fig. 3, left, where

the different propagation speeds of the frequencies of the circle image (Fig. 1 (a)) cause spurious

oscillations at the circle center over time, resulting in a very different response compared to the

analytic solution depicted in Fig. 1 (b). To overcome such issue, we adopt a solution similar to that

proposed in:12 we interleave a wave propagation step and a linear diffusion step governed by the

heat equation with diffusivity k ∈ R+,

ut(x, y; t) = k∇2u(x, y; t) , (19)
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which we implement using the discrete spatial Laplacian approximation used in12 and forward

differences for the time derivative. These choices result in the following explicit scheme, that we

interleave with a step of wave propagation,

un+1
i,j =




p 2p p

2p 1− 12p 2p

p 2p p



⊗ un+ 1

2
i,j (20)

where p = k∆t
∆x2

is a constant and un+ 1
2 is the output of the last wave propagation step.

We use Neumann boundary conditions for the heat equation, i.e.

un+1
i,1 = un+1

i,2 un+1
1,j = un+1

2,j

un+1
i,w = un+1

i,w−1 un+1
h,j = un+1

h−1,j . (21)

The beneficial effect of the wave-diffusion process is clearly visible in Fig. 3, right, where

spurious oscillations have been filtered out. Unfortunately, the diffusion process also negatively

affects the numerical solution: it reduces the strength of the extrema, thereby making it harder to

robustly detect them, and it makes them appear earlier, thus reducing the theoretically perfect scale

covariance of the wave solution. In spite of these drawbacks, in what follows we make always use

of the interleaved process to remove spurious oscillations and enable robust extrema detection.
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(a) (b)

Fig 3 Temporal evolution of the intensity at the center of the circle in Fig. 1 under the discretized wave process (a) and
the discretized mixed wave-diffusion process (b).

3.5 Extrema detection and validation

As illustrated in Fig. 4, the spatio-temporal extrema of u(x, y; t) identify perceptually meaningful

image structures: in the considered example, three extrema show up, two corresponding to the

symmetries arising at the center of the square-like structures formed by the sides of the rectangle

and one corresponding to the center of the rectangle.

The time of a spatio-temporal extremum (xext, yext, text) is related to the scale (the radius) rext

of the detected symmetry by the following simple relation:

rext =
c text
∆x

=
c∆t next

∆x
. (22)

Such scale is directly expressed in pixels. This is a relevant difference in practice with respect

to diffusive scale–spaces, where the relationship between the scale σ and the associated image

patch is somewhat arbitrary, due to the theoretically infinite extent of the Gaussian kernel.
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(a) (b) (c)

(d) (e) (f)

Fig 4 (a) initial image I; (b) extrema of u(x, y; t);(c-d) wave state when the two smaller keypoints are detected, from
a side and a top view, respectively; (e-f) wave state when the third keypoint is detected.

Given such scale and rotation covariant extrema in our family of signals, we define as key-

points the sharp local extrema of u(x, y; t). Although in the synthetic images considered so far

the requirement of sharpness of local extrema is redundant, as all extrema are indeed sharp, in real

images, weak (i.e. not repeatable) symmetries may be detected if all local extrema are accepted

rather than sharp ones only.

We define an extremum as sharp if its value is significantly larger (or smaller) than the average

of the values in its temporal neighborhood:
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Fig 5 Definition of sharp extrema: (a) Temporal evolution of the intensity at the center (xc, yc) of circles of varying
radius. The extrema (minima) show up at times proportional to the circles radius. Black dots on each curve indicate
the neighborhood used at each scale for sharpness-based keypoints filtering; (b) size of the neighborhoods defined by
the black dots in (a) and their linear regression as a function of radius; (c) linear regression as a function of radius of
the absolute difference between the value at the extremum and the mean value in the neighborhood .

|u(xext, yext, text)− ū(xext, yext, text)| ≥ θ, (23)

ū(xext, yext, text) =
1

t2 − t1

t2∑

k=t1

u(xext, yext, k) . (24)

Both the neighborhood [t1, t2] and the threshold θ must adapt with scale, as the absolute value

at the extrema as well as their smoothness increase with scale (Fig. 5 (a)). They also change

according to the contrast at the edges defining the symmetry. Sharpness could be measured by

considering spatial and/or temporal neighborhoods. However, spatial neighborhoods are not de-

fined at the boundary of the image and the computation of the average is more expensive than over

17



1-D temporal neighborhoods (efficient schemes, such as integral images or histograms can be, of

course, deployed in both cases). We experimentally found that measuring sharpness only along

time suffices to prune unwanted weak symmetries.

The definition of the neighborhood must fulfill two contradicting requirements: it should be

small enough to avoid the influence of clutter and occlusions in real applications, but also large

enough to allow for discriminating between weak and repeatable symmetries. To limit the influence

of clutter and occlusions, we select as end of the neighborhood the extremum itself, t2 = text, so

that any texture external to the symmetry does not influence its detection. To define the starting

point of the neighborhood, t1, we analyze the behavior of the most symmetrical shape with the

highest contrast, i.e. a circle like that depicted in Fig. 1. The trend of u(x, y; t) at the center of

the circle starts with a plateau and then exhibits a sudden drop toward the extremum: indeed, this

would be a discontinuity in the continuous case (Fig. 1). Therefore, we define the starting point of

the neighborhood as the end of the plateau1 (Fig. 5 (a)).

As the difference between the discrete solution and the continuous solution grows when the

scale gets larger due to both numerical dispersion and the diffusion interleaved with propagation,

we learn the length t21 = |t2 − t1| of the time interval to compute the sharpness for each scale

by linear regression of the model t12(rext) = atrext + bt (Fig. 5 (b)). Using again the image of

the circle, we also regress a linear model θmax(rext) = aθrext + bθ for the value of the absolute

difference |u− ū| (Fig. 5 (c)): this defines the maximum value θmax for the threshold θ. We would

like to point out that these regressions are performed only once to estimate the parameters, which

are then used to detect keypoints on every kind of input image. As we are interested in detecting

1The end of the plateau is identified as the first point ns along the time axis where the absolute value of the time
derivative is larger than a threshold value, i.e. abs(uns+1

i,j − uns
i,j) > th. We choose th = 1.5 in our regressions.
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weaker, though repeatable, symmetries than a high-contrast circle, the actual value θ used at each

scale is defined as a fraction ρ of θmax(rext).

4 Simulation with pyramid of images

One of the main limits of resorting to wave propagation to extract keypoints is the computational

cost of the simulation. To overcome such limit, we propose to deploy an image pyramid, as done

e.g. in.9 As in the standard image pyramid, we consider a fixed number of images per octave, and

we down-sample each side of the image by a factor of 2 after each octave.

When down-sampling the image to move to a different octave, we keep the Courant number

constant. This results in a scheme that is still stable, but simulates waves by using a larger ∆t.

Indeed, at octave i, the corresponding ∆t(i) is

∆x(i) = 2i∆x, λ(i) = λ(0) ⇒ ∆t(i) = 2i∆t (25)

Given the radius rmax of the biggest feature we wish to detect and the number L of the images

per octave, we compute the number of octaves O by the following formula:

O = argmin
o

o∑

i=0

L ∗ 2i ≤ Tmax =
⌈rmax
c∆t

⌉
(26)

The advantage of simulating wave propagation by a pyramidal scheme is twofold: the cost to

simulate one time step of wave propagation decreases due to the smaller number of pixels at the

higher octaves; the cost to reach the end of the simulation, i.e. the time Tmax corresponding to the
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Fig 6 Reference objects in the Untextured dataset.

biggest feature we want to detect, decreases, too, due to the larger time sampling step at the higher

levels of the pyramid.

To locate extrema in the pyramid, we keep auxiliary images at each octave as done by DoG.9

In particular, if we analyze L images at each octave, we actually compute L + 2 images. We start

an octave with the down-sampled version of the L + 1-th image of the previous octave and then

let the wave simulation run for L + 2 time steps. We then detect extrema by performing 3x3x3

non-maxima suppression on the L images from image 2 to image L+ 1.

To perform the sharpness check on extrema, we create a 2D array of cumulative sums with the

L logical images at each octave of the pyramid, i.e. by skipping the two auxiliary images at each

octave. If t1 belongs to a different octave than t2, we down-sample the cumulative sums at t1 to the

size of the image at time t2 and we then use their difference to efficiently compute (24) and (23).

Finally, to recover the exact position in the original image of a keypoint detected at the higher

octaves of the pyramid, we interpolate the wave evolution in space and time according to the

method proposed by Brown and Lowe,43 so to obtain the position and scale of the extrema with

sub-pixel accuracy. Locating interest points to sub-pixel accuracy is especially important at higher

levels of the pyramid, where the sampling step corresponds to larger offsets in the original image.
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5 Experimental results

The proposed algorithm has been tested on three publicly available datasets. The first is the stan-

dard Oxford benchmark for detectors evaluation introduced in the well-know work by Mikolajczyk

et al.15 It includes 8 planar scenes and 5 nuisance factors: scale and rotation changes, viewpoint

changes, decreasing illumination, blur and JPEG compression. Performance is measured accord-

ing to repeatability and number of correct correspondences: repeatability between two images is

computed as the ratio between the number of correct correspondences and the smaller number of

detected regions located in the part of the scene present in both images; two regions form a correct

correspondence if the intersection over union between them, when transformed according to the

ground-truth homography, is greater then 50%.

The second dataset is the DTU Robot dataset.16 It contains 60 scenes of planar and non-planar

objects from a variety of categories such as miniature buildings, fabrics, and groceries. Each scene

is captured from a set of repeatable positions along four paths by using a robotic arm. The dataset

is somewhat complementary to the Oxford dataset in that it considers less kinds of nuisances

(namely, scale changes, viewpoint changes and relighting), but comprises a more varied pool of

scenes, therefore allowing to gain more insights on the general applicability of tested detectors.

The authors consider only the recall rate, a performance figure analogous to the repeatability of the

Oxford dataset.

Finally, to test the performance of detectors on untextured objects, we used the dataset in-

troduced in,14 which consists of 5 man-made objects (Fig. 6). The dataset focuses on scale and

rotation invariance, but having been acquired with a hand-held camera, it also includes small out-

of-plane rotations as well as slight defocus and light changes due to automatic parameter adjust-
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Table 2 Parameters for the linear models used to estimate t12(rext) = atrext + bt and θmax(rext) = aθrext + bθ

described in Fig. 5 and Sec. 3.5.
Method at bt aθ bθ
Full Res INT 1/4 S 0.122 5.80 2.510 321.51
Full Res INT 1/6 S 0.143 6.40 2.401 335.21
Full Res MFI S 0.126 5.92 2.485 328.40
Full Res INT 1/4 NS 0.224 11.26 2.465 356.23
Full Res INT 1/6 NS 0.147 11.89 1.805 408.76
Full Res MFI NS 0.226 11.93 2.494 358.92
Pyramid INT 1/6 NS 0.410 6.231 0.113 380.82

ments performed by the camera driver.

We compare our proposal to a set of state-of-the-art detectors, whose code is publicly available.

In particular, for DoG,9 Harris-Affine, Harris-Laplace, Hessian-Affine, Hessian-Laplace,15 IBR,

EBR44 and MSER23 we used the binaries provided by the authors of;15 for FastHessian21 we used

the original SURF code2.

As for parameters, we set k = 0.16 and ρ = 0.07, i.e. we accept extrema at least as sharp

as 7% of the maximum sharpness θmax, to allow low contrast symmetries to be detected in dark

or overexposed images. We have experimentally found L = 16 levels per octave to be a good

trade-off between speed-up and simulation quality. We detect features as small as rmin = 6 pixels

(i.e. we start to search for extrema after nmin = b rmin

λ
c iterations) and as big as rmax = 150 pixels,

(i.e. we run the simulation for nmax = d rmax

λ
e iterations). We refer to our proposal as to WaDe

(WAve-based DEtector).

5.1 Numerical scheme selection

Before comparing our proposal to the other detectors, we carried out an experimental investiga-

tion concerning the most appropriate numerical scheme to simulate wave propagation within our

algorithm. We performed the analysis without deploying the pyramidal approximation.

2http://www.vision.ee.ethz.ch/˜surf/
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Table 3 Comparison in terms of mean repeatability among the numerical schemes for wave simulation under different
nuisances. In bold the best performance along each row, in italic the second best.

Nuisance INT 1/4 NS INT 1/4 S INT 1/6 NS INT 1/6 S MFI NS MFI S
Scale and Rotation 0.89 0.88 0.89 0.88 0.89 0.88
Decreasing Light 0.82 0.82 0.83 0.82 0.82 0.82
Viewpoint angle 0.49 0.49 0.48 0.48 0.49 0.49
JPEG Compression 0.85 0.84 0.85 0.85 0.85 0.84
Blur 0.89 0.88 0.88 0.89 0.88 0.87
Untextured 0.35 0.36 0.37 0.36 0.35 0.36
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Fig 7 Results on the Oxford dataset15 for relative and absolute repeatability.

The neighborhood size and threshold of the sharpness test were estimated for all the considered

schemes, both at the stability bound and at the middle of their stability range. The values of the

regressed parameters are reported in Tab. 2. We then run WaDe using the different numerical
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schemes on the Oxford and Untextured datasets, whose sizes allows to perform the comparison

in a reasonable time. We report the mean repeatability for the different nuisances addressed by

the datasets in Tab. 3. As already discussed with the help of Fig. 2, all the schemes are more

isotropic and therefore more rotation invariant if used in the middle of their stability range (not-on-

stability, NS in the table). Among the three NS schemes, INT 1/6 was shown to be less severely

affected by numerical dispersion, e.g. the extreme diagonal spatial frequencies travel closer to the

theoretical velocity than the corresponding frequencies in INT 1/4 and MFI schemes (see again

Fig. 2). This is confirmed by the mean repeatability measurements reported in Tab. 3, as INT

1/6 NS turns out to provide overall the best performance across the nuisances addressed by the

considered datasets. Surprisingly, an implicit scheme such as MFI, although far more complex to

implement and expensive to run, does not deliver better performance. Based on these findings, we

select INT 1/6 NS as the reference numerical scheme to simulate wave propagation in our keypoint

detector and deploy its pyramidal approximation in all subsequent experiments using the regressed

parameters reported in the last row of Tab. 2.

5.2 Oxford Dataset

Fig. 7 reports results on the full Oxford dataset. On the Boat and Bark sets of images, which test

scale and rotation invariance, such theoretical properties of our algorithm are evidently confirmed.

Moreover, the intuition that symmetries are a powerful cue to find repeatable keypoints is sup-

ported by the large margin in performance between our proposal and previous detectors on the

Boat images. Leuven images allow for assessing robustness to lighting changes, and our method

turns out slightly better than MSER, which is known to be the best detector in withstanding this

nuisance.15 On Graffiti and Wall images, which deal with robustness to affine deformations, our
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Fig 8 Results on the Robot dataset16 for camera movements along the linear path and the three arcs with diffuse
lighting.

detector provides performance similar to DoG: one major drawback of both detectors is the lack of

an affine renormalization of the extracted patch, which hinders their results in such comparison. In

UBC images, the nuisance is JPEG compression: our detector turns out to be on par with the best

previous detectors, namely Hessian-Laplace and Harris-Laplace, especially at higher compression

rates. Finally, Bikes and Trees images show how symmetries are definitely the best cue to deal

with blur: intuitively, symmetries are largely unaffected by isotropic smoothing.

As for the number of correspondences, our detector usually finds a higher number of repeatable

keypoints than other methods. On some scenes the number is similar to DoG, which is usually

slightly larger than the other methods, for instance on the UBC, Leuven, and Wall scenes. The

order of magnitude is always similar to that of the other detectors, but on the Trees images: all

the symmetries created by small leafs and details on the trunks are robustly captured by WaDe and

results in an much higher number of repeatable keypoints.

5.3 Robot Dataset

Fig. 8 shows the first set of results on the Robot Dataset. In this experiment, we consider stable,

diffuse illumination and camera movements along the linear path, which tests scale invariance, and

the three arcs, which test robustness to a combination of scale and affine changes (the experiments
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Fig 9 Results on the Robot dataset16 for changes in lighting with directional light. Every chart refer to a frame, which
in turn implies a specific position of the robotic arm. In every chart, the horizontal axis reports the light position, from
left to right in the first six charts, and from back to front in the remaining charts.

depicted in Fig. 9 in16). For memory and time constraints (the whole dataset amounts to 730 GB),

we run our proposal only on the reduced dataset selected by the authors. Hence results are available

only at a reduced number of sample points. Results for all other detectors were kindly provided

by the authors of.16 As far as the linear path is concerned, the proposed algorithm shows the

best robustness to scale variation and outperforms by a large margin all the other detectors at the

maximum scale variation. This result confirms the findings on the Oxford Boat and Bark dataset

and reinforces them by demonstrating that they hold for a variety of scenes. As for the arcs, on the

first two arcs our detector is on par with DoG and Harris, the best performers, and outperforms all

the tested detectors on the third arc.

Fig. 9 reports the second experiment on the Robot Dataset, dealing with lighting changes. In
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these experiments, a directional light is simulated according to the protocol proposed in,16 i.e. by

weighing the images acquired with a single led turned on, so as to simulate a directional light

moving either from left to right or from back to front around the scene (the experiments depicted

in Fig. 10 and 11 in16). WaDe provides overall the best performance, being on par with Harris

when scale changes are limited, and outperforming all the tested detectors on frames 64 and 95,

i.e. when the camera is moved to the third, furthest arc.

5.4 Untextured Dataset

Fig. 10 depicts results on the Untextured objects dataset. We were unable to run IBR and EBR on

all set of images as the binaries crashed on some sets: yet, performance on the remaining sets was

significantly worse than others, so we do not report them in the charts. Untextured objects set forth

significant difficulties for current state-of-the-art detectors: the number of correct correspondences

drops by two orders of magnitude with respect to the other datasets, and repeatability falls below

50%. Please note that, as done in,14 on this dataset we lower from 40% to 20% the overlap error

to consider two keypoints as repeatable, as we found that this is the maximum error that a robust

descriptor as SIFT can tolerate with poorly textured objects. Symmetries confirm to be a robust

cue even in this challenging scenario: their repeatability is the least affected by the increasing

difficulties of the scenes. They also turn out to provide the highest number of correspondences, an

important practical trait to enable their use in recognition of untextured objects in the presence of

occlusions.
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Fig 10 Results on the Untextured dataset14 for relative and absolute repeatability.

5.5 Descriptor matching

Using again the Oxford dataset, we assess the distinctiveness of the detected repeatable regions by

considering how well can they be matched by a state-of-the-art descriptor such as SIFT.9 Although

favouring detectors either proposed together with the selected descriptor or designed to take advan-

tage of its traits, this methodology is regarded as the standard approach15 to ascertain the quality

of the regions found by a detector due to the widespread use of SIFT.

Results are reported in Fig. 11. The performance of the descriptor are greatly influenced by

both the content of images and the transformation under test in each set, the overall performance

varying between consistently low matching scores, as in Bark and Graffiti, and always very good

results, as in UBC. In spite of this variability, the overall ranking of the descriptiveness of the

regions found by the tested detectors is consistent. Regions by WaDe and DoG turn out to be
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the most distinctive. In particular, they are: as good as the others when the descriptor is not

particularly effective, as in Bark or Graffiti; on par on some scenes (Leuven, Trees); the best for a

particular scene, as it is the case of DoG for Boat or UBC and WaDe for Bikes or Wall. Overall,

WaDe regions can be used to obtain point-to-point correspondences by matching SIFT descriptors

with a performance level comparable to DoG, which was proposed together with SIFT. This fact,

combined with the observation that the number of correct matches is always equivalent or higher

for WaDe with respect to the other detectors, vouches that WaDe keypoints offer not only state-

of-the-art repeatability but also remarkable distinctiveness, and, as such, are amenable to effective

deployment within practical local feature pipelines.

5.6 Comparison to DoG

As suggested by a reviewer, we present here a brief comparative discussion between WaDe and

DoG motivated by prominence of the latter method in the local invariant features literature, By

comparing the red lines (WaDe) to the green lines (DoG) in Figures 7-8-9, we can notice how WaDe

is significantly more robust to blur (Fig. 7, last row) as well as, on average, to scale changes (Fig.

7. Boat and Bark, Fig.9 linear path). Besides, WaDe seems to provide overall better performance

in varying lighting conditions (Fig. 7, Leuven and Fig. 9). On the other hand, WaDe and DoG

behave similarly in terms of robustness to out-of-plane rotations (Fig. 7 - Graf and Wall, Fig. 8

first, second and third arc). When it comes to untextured scenes (Fig. 10), WaDe outperforms

DoG in all experiments, which supports our intuition on symmetries providing more robust and

distinctive cues in these settings. It is also worth pointing out how Wade yields quite consistently

a notably larger number of repeatable keypoints than DoG (Figs. 7 and 10, charts depicting #
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Fig 11 Results on the Oxford dataset15 for descriptor matching experiments.

correspondences), a very useful property in practical settings. Eventually, we found it remarkable

that WaDe can detect keypoints as effective as DoG to establish correspondences by matching

SIFT descriptors (Fig. 11) despite DoG and SIFT having been proposed as two tightly coupled

steps of the same local invariant features pipeline.

5.7 Speed-up by pyramidal approximation

Finally, we evaluate the gain in execution time obtained by introducing the pyramidal approxima-

tion. Indeed, it is noteworthy that all previous results have been obtained with such an approxima-
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Fig 12 Execution times of the pyramidal approximation and the full resolution algorithm as a function of image size.

tion in place; they already show that its deployment does not reduce the performance with respect

to the full resolution algorithm. Yet, the pyramid has a positive impact on the efficiency of the algo-

rithm. As shown in Fig. 12, while the full resolution algorithm run-time grows exponentially with

the image size, the pyramid approximation increase is almost linear with the image size, and for

large images can be faster than the full resolution algorithm by almost an order of magnitude. The

C++ implementation of the pyramidal approximation can process a 640×480 images (Boat from

the Oxford dataset) at 7 frames per second on a standard PC without any optimization, whereas the

full resolution algorithm runs at 1 frame per second on the same image.

6 Concluding remarks

This work shows that the traditional linear scale-space theory is not the unique way to address

scale-invariant feature detection within an elegant conceptual framework. Instead of the heat equa-

tion, hyperbolic PDEs, and in particular the wave equation, can indeed be used to derive a one-

parameter family of signals that enables scale–invariant image analysis. The wave equation fires

on symmetries, and we have shown they can provide robust and discriminative cues for detection

of repeatable keypoints on a broader set of image structures than those found on highly textured

surfaces. We have discussed the problem of numerical simulation of wave propagation in images
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and selected the most appropriate scheme and simulation parameters for our peculiar use. We

have also shown how to speed-up the algorithm without penalizing its performance by deploying

a pyramid of images where the Courant number is kept constant between octaves.

As suggested by prominent evaluations,15, 16 salient regions are usually complementary, so that

a set of diverse detectors might be deployed whenever one cannot predict in advance the likely

scene structures. The proposed algorithm, based on a rather overlooked cue such as symmetry,

might turn out highly complementary with respect to current state-of-the-art detectors. As vouched

by earlier work,11 our approach is nicely implementable on fine grained data-parallel architectures,

and as such holds the potential for effective acceleration via GPU processing.

6.1 Future work

Despite good results, we feel that there is still room for improvements. Different methods or

domains for the simulation of waves having better numerical properties may be considered and

their impact on the overall performance and run-time of the algorithm be investigated, e.g. more

robust but less efficient numerical schemes45 or hexagonal lattices.46 Moreover, several comple-

mentary studies may be envisaged, in particular, in order to either design or learn a tightly coupled

descriptor computed directly from wave simulation. Another possible avenue for future work deals

with extending the detection of wave-based features to color images, e.g. via the model of images

as manifold embedded in a combined spatial-color space.47
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