Many problems of interest for cyber-physical network systems can be formulated as mixed-integer linear programs in which the constraints are distributed among the agents. In this paper, we propose a distributed algorithmic framework to solve this class of optimization problems in a peer-to-peer network with no coordinator and with limited computation and communication capabilities. At each communication round, agents locally solve a small linear program, generate suitable cutting planes, and communicate a fixed number of active constraints. Within the distributed framework, we first propose an algorithm that, under the assumption of integer-valued optimal cost, guarantees finite-time convergence to an optimal solution. Second, we propose an algorithm for general problems that provides a suboptimal solution up to a given tolerance in a finite number of communication rounds. Both algorithms work under asynchronous, directed, unreliable networks. Finally, through numerical computations, we analyze the algorithm scalability in terms of the network size. Moreover, for a multi-agent multi-task assignment problem, we show, consistently with the theory, its robustness to packet loss.
Testa A., Rucco A., Notarstefano G. (2020). Distributed Mixed-Integer Linear Programming via Cut Generation and Constraint Exchange. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 65(4), 1456-1467 [10.1109/TAC.2019.2920812].
Distributed Mixed-Integer Linear Programming via Cut Generation and Constraint Exchange
Testa A.;Notarstefano G.
2020
Abstract
Many problems of interest for cyber-physical network systems can be formulated as mixed-integer linear programs in which the constraints are distributed among the agents. In this paper, we propose a distributed algorithmic framework to solve this class of optimization problems in a peer-to-peer network with no coordinator and with limited computation and communication capabilities. At each communication round, agents locally solve a small linear program, generate suitable cutting planes, and communicate a fixed number of active constraints. Within the distributed framework, we first propose an algorithm that, under the assumption of integer-valued optimal cost, guarantees finite-time convergence to an optimal solution. Second, we propose an algorithm for general problems that provides a suboptimal solution up to a given tolerance in a finite number of communication rounds. Both algorithms work under asynchronous, directed, unreliable networks. Finally, through numerical computations, we analyze the algorithm scalability in terms of the network size. Moreover, for a multi-agent multi-task assignment problem, we show, consistently with the theory, its robustness to packet loss.File | Dimensione | Formato | |
---|---|---|---|
main_dimilp_journ.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.64 MB
Formato
Adobe PDF
|
1.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.