High-performance computing installations, which are at the basis of web and cloud servers as well as supercomputers, are constrained by two main conflicting requirements: IT power consumption generated by the computing nodes and the heat that must be removed to avoid thermal hazards. In the worst cases, up to 60% of the energy consumed in a data center is used for cooling, often related to an over-designed cooling system. We propose a low-cost and battery-supplied wireless sensor network (WSN) for fine-grained, flexible and long-term data center temperature monitoring. The WSN has been operational collecting more than six million data points, with no losses, for six months without battery recharges. Our work reaches a 300× better energy efficiency than the previously reported WSNs for similar scenarios and on a 7× wider area. The data collected by the network can be used to optimize cooling effort while avoiding dangerous hot spots.
Polonelli T., Brunelli D., Bartolini A., Benini L. (2019). A LoRaWAN wireless sensor network for data center temperature monitoring. Springer Verlag [10.1007/978-3-030-11973-7_20].
A LoRaWAN wireless sensor network for data center temperature monitoring
Polonelli T.;Brunelli D.;Bartolini A.;Benini L.
2019
Abstract
High-performance computing installations, which are at the basis of web and cloud servers as well as supercomputers, are constrained by two main conflicting requirements: IT power consumption generated by the computing nodes and the heat that must be removed to avoid thermal hazards. In the worst cases, up to 60% of the energy consumed in a data center is used for cooling, often related to an over-designed cooling system. We propose a low-cost and battery-supplied wireless sensor network (WSN) for fine-grained, flexible and long-term data center temperature monitoring. The WSN has been operational collecting more than six million data points, with no losses, for six months without battery recharges. Our work reaches a 300× better energy efficiency than the previously reported WSNs for similar scenarios and on a 7× wider area. The data collected by the network can be used to optimize cooling effort while avoiding dangerous hot spots.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.