This works aims to set up a rapid and nondestructive method to evaluate the advanced oxidation of virgin olive oils (VOOs). An electronic nose based on an array of six metal oxide semiconductor sensors was used, jointly with multiple linear regression (MLR), to predict the oxidized fatty acid (OFA) concentration in VOO samples characterized by different oxidative status. An MLR model constructed using five predictors was able to predict OFA concentration with an average validation error of 9%.

Rapid Evaluation of Oxidized Fatty Acid Concentration in Virgin Olive Oils Using Metal Oxide Semiconductor Sensors and Multiple Linear Regression

BENDINI, ALESSANDRA;CERRETANI, LORENZO
2009

Abstract

This works aims to set up a rapid and nondestructive method to evaluate the advanced oxidation of virgin olive oils (VOOs). An electronic nose based on an array of six metal oxide semiconductor sensors was used, jointly with multiple linear regression (MLR), to predict the oxidized fatty acid (OFA) concentration in VOO samples characterized by different oxidative status. An MLR model constructed using five predictors was able to predict OFA concentration with an average validation error of 9%.
2009
LERMA-GARCIA M. J.; SIMO-ALFONSO E. F.; BENDINI A.; CERRETANI L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/77950
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact