We describe conjecturally the generalized Samuel multiplicities c_0,...,c_{d-1} of a monomial ideal I subset K[x_1,...,x_d] in terms of its Newton polyhedron NP(I). More precisely, we conjecture that c_i equals the sum of the normalized (d-1)-volumes of pyramids over the projections of the (d-i-1)-dimensional compact faces of NP(I) along the infinite-directions of i-unbounded facets in which they are contained. For c_0 proofs are known (Guibert, Jeffries and Montaño) and for c_{d-1} a proof is given.

Achilles R., Manaresi M. (2022). Generalized Samuel Multiplicities of Monomial Ideals and Volumes. EXPERIMENTAL MATHEMATICS, 31(2), 611-620 [10.1080/10586458.2019.1671919].

Generalized Samuel Multiplicities of Monomial Ideals and Volumes

Achilles R.;Manaresi M.
2022

Abstract

We describe conjecturally the generalized Samuel multiplicities c_0,...,c_{d-1} of a monomial ideal I subset K[x_1,...,x_d] in terms of its Newton polyhedron NP(I). More precisely, we conjecture that c_i equals the sum of the normalized (d-1)-volumes of pyramids over the projections of the (d-i-1)-dimensional compact faces of NP(I) along the infinite-directions of i-unbounded facets in which they are contained. For c_0 proofs are known (Guibert, Jeffries and Montaño) and for c_{d-1} a proof is given.
2022
Achilles R., Manaresi M. (2022). Generalized Samuel Multiplicities of Monomial Ideals and Volumes. EXPERIMENTAL MATHEMATICS, 31(2), 611-620 [10.1080/10586458.2019.1671919].
Achilles R.; Manaresi M.
File in questo prodotto:
File Dimensione Formato  
experimental.pdf

accesso aperto

Descrizione: Versione sottoposta al referee
Tipo: Preprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 446.95 kB
Formato Adobe PDF
446.95 kB Adobe PDF Visualizza/Apri
UEXM_A_1671919_annotated.pdf

Open Access dal 08/11/2020

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/729776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact