The inhibition of steroidogenic cytochrome P450 enzymes has been shown to play a central role in the management of life-threatening diseases such as cancer, and indeed potent inhibitors of CYP19 (aromatase) and CYP17 (17α hydroxylase/17,20 lyase) are currently used for the treatment of breast, ovarian and prostate cancer. In the last few decades CYP11B1 (11-β-hydroxylase) and CYP11B2 (aldosterone synthase), key enzymes in the biosynthesis of cortisol and aldosterone, respectively, have been also investigated as targets for the identification of new potent and selective agents for the treatment of Cushing's syndrome, impaired wound healing and cardiovascular diseases. In an effort to improve activity and synthetic feasibility of our different series of xanthone-based CYP11B1 and CYP11B2 inhibitors, a small series of imidazolylmethylbenzophenone-based compounds, previously reported as CYP19 inhibitors, was also tested on these new targets, in order to explore the role of a more flexible scaffold for the inhibition of CYP11B1 and -B2 isoforms. Compound 3 proved to be very potent and selective towards CYP11B1, and was thus selected for further optimization via appropriate decoration of the scaffold, leading to new potent 4′-substituted derivatives. In this second series, 4 and 8, carrying a methoxy group and a phenyl ring, respectively, proved to be low-nanomolar inhibitors of CYP11B1, despite a slight decrease in selectivity against CYP11B2. Moreover, unlike the benzophenones of the first series, the 4′-substituted derivatives also proved to be selective for CYP11B enzymes, showing very weak inhibition of CYP19 and CYP17. Notably, the promising result of a preliminary scratch test performed on compound 8 confirmed the potential of this compound as a wound-healing promoter.

Benzophenones as xanthone-open model CYP11B1 inhibitors potentially useful for promoting wound healing

Gobbi S.
;
Catanzaro E.;Belluti F.;Rampa A.;Fimognari C.;Bisi A.
2019

Abstract

The inhibition of steroidogenic cytochrome P450 enzymes has been shown to play a central role in the management of life-threatening diseases such as cancer, and indeed potent inhibitors of CYP19 (aromatase) and CYP17 (17α hydroxylase/17,20 lyase) are currently used for the treatment of breast, ovarian and prostate cancer. In the last few decades CYP11B1 (11-β-hydroxylase) and CYP11B2 (aldosterone synthase), key enzymes in the biosynthesis of cortisol and aldosterone, respectively, have been also investigated as targets for the identification of new potent and selective agents for the treatment of Cushing's syndrome, impaired wound healing and cardiovascular diseases. In an effort to improve activity and synthetic feasibility of our different series of xanthone-based CYP11B1 and CYP11B2 inhibitors, a small series of imidazolylmethylbenzophenone-based compounds, previously reported as CYP19 inhibitors, was also tested on these new targets, in order to explore the role of a more flexible scaffold for the inhibition of CYP11B1 and -B2 isoforms. Compound 3 proved to be very potent and selective towards CYP11B1, and was thus selected for further optimization via appropriate decoration of the scaffold, leading to new potent 4′-substituted derivatives. In this second series, 4 and 8, carrying a methoxy group and a phenyl ring, respectively, proved to be low-nanomolar inhibitors of CYP11B1, despite a slight decrease in selectivity against CYP11B2. Moreover, unlike the benzophenones of the first series, the 4′-substituted derivatives also proved to be selective for CYP11B enzymes, showing very weak inhibition of CYP19 and CYP17. Notably, the promising result of a preliminary scratch test performed on compound 8 confirmed the potential of this compound as a wound-healing promoter.
Gobbi S.; Hu Q.; Foschi G.; Catanzaro E.; Belluti F.; Rampa A.; Fimognari C.; Hartmann R.W.; Bisi A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/700804
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact