G quadruplexes (G4s) and R loops are noncanonical DNA structures that can regulate basic nuclear processes and trigger DNA damage, genome instability, and cell killing. By different technical approaches, we here establish that specific G4 ligands stabilize G4s and simultaneously increase R-loop levels within minutes in human cancer cells. Genome-wide mapping of R loops showed that the studied G4 ligands likely cause the spreading of R loops to adjacent regions containing G4 structures, preferentially at 3′-end regions of expressed genes, which are partially ligand-specific. Overexpression of an exogenous human RNaseH1 rescued DNA damage induced by G4 ligands in BRCA2-proficient and BRCA2-silenced cancer cells. Moreover, even if the studied G4 ligands increased noncanonical DNA structures at similar levels in nuclear chromatin, their cellular effects were different in relation to cell-killing activity and stimulation of micronuclei, a hallmark of genome instability. Our findings therefore establish that G4 ligands can induce DNA damage by an R loop-dependent mechanism that can eventually lead to different cellular consequences depending on the chemical nature of the ligands.

De Magis, A., Manzo, S.G., Russo, M., Marinello, J., Morigi, R., Sordet, O., et al. (2019). DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 116(3), 816-825 [10.1073/pnas.1810409116].

DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells

De Magis, Alessio;Manzo, Stefano G.;Russo, Marco;Marinello, Jessica;Morigi, Rita;Capranico, Giovanni
2019

Abstract

G quadruplexes (G4s) and R loops are noncanonical DNA structures that can regulate basic nuclear processes and trigger DNA damage, genome instability, and cell killing. By different technical approaches, we here establish that specific G4 ligands stabilize G4s and simultaneously increase R-loop levels within minutes in human cancer cells. Genome-wide mapping of R loops showed that the studied G4 ligands likely cause the spreading of R loops to adjacent regions containing G4 structures, preferentially at 3′-end regions of expressed genes, which are partially ligand-specific. Overexpression of an exogenous human RNaseH1 rescued DNA damage induced by G4 ligands in BRCA2-proficient and BRCA2-silenced cancer cells. Moreover, even if the studied G4 ligands increased noncanonical DNA structures at similar levels in nuclear chromatin, their cellular effects were different in relation to cell-killing activity and stimulation of micronuclei, a hallmark of genome instability. Our findings therefore establish that G4 ligands can induce DNA damage by an R loop-dependent mechanism that can eventually lead to different cellular consequences depending on the chemical nature of the ligands.
2019
De Magis, A., Manzo, S.G., Russo, M., Marinello, J., Morigi, R., Sordet, O., et al. (2019). DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 116(3), 816-825 [10.1073/pnas.1810409116].
De Magis, Alessio; Manzo, Stefano G.; Russo, Marco; Marinello, Jessica; Morigi, Rita; Sordet, Olivier; Capranico, Giovanni*
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/661648
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 135
  • Scopus 207
  • ???jsp.display-item.citation.isi??? 202
social impact