Background: Colostrum is the first secretion produced by mammary glands during the hours immediately preceding and succeeding parturition. This secretion differs from milk and represents an essential vehicle of passive immunity, prebiotic compounds and growth factors involved in intestinal development. Most of the literature concerning colostrum composition refers mainly to human and cow; and little is known about pig colostrum metabolome and how it varies between pig breeds and different farrowing parity. Thus, the aim of the present research is to provide new information about pig colostrum composition and the associations between metabolites, the sows' breed and the survival and growth rates of their litters. Results: Colostrum samples were gathered from 58 parturitions of sows belonging to three different breeds chosen for their importance in Italian heavy pig production: 31 Large White, 15 Landrace and 12 Duroc respectively. The defatted and ultrafiltered colostrum samples were analysed using1H-NMR spectroscopy. Principal Components Analysis (PCA) was assessed on the obtained spectra. In addition, using a Stepwise Regression and a Linear Regression analyses the metabolites named after the signals assignment were tested for their associations with piglets' performances. Twenty-five metabolites were identified, comprehending monosaccharides, disaccharides (such as lactose), organic acids (lactate, citrate, acetate and formate), nitrogenous organic acids (such as creatine) and other compounds, including nucleotides. PCA results evidence a clustering due to breed and season effects. Lactose was the main compound determining the assignment of the samples into different clusters according to the sow breed. Furthermore, some metabolites showed to be associated with piglets' performance and survival traits: acetate and taurine were positively related to litter weight gain and piglets' survival rate, respectively, while dimethylamine and cis-aconitate were linked to new-borns' impaired ability to survive. Conclusions: The results obtained suggest that colostrum composition is affected by breed, which, together with environmental conditions, may cause changes in colostrum metabolites content with possible consequences on piglets' performances. Among the identified metabolites, acetate, taurine, dimethylamine and cis-aconitate showed consistent associations with piglets' survival rate and litter weight gain, implying that these compounds may affect new-borns' ability to survive.

Gianfranco Picone, M.Z. (2018). Metabolomics characterization of colostrum in three sow breeds and its influences on piglets' survival and litter growth rates. JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY, 9(23), 1-12 [10.1186/s40104-018-0237-1].

Metabolomics characterization of colostrum in three sow breeds and its influences on piglets' survival and litter growth rates

Gianfranco Picone
Membro del Collaboration Group
;
Martina Zappaterra
Membro del Collaboration Group
;
Diana Luise
Membro del Collaboration Group
;
Alessia Trimigno
Membro del Collaboration Group
;
Francesco Capozzi
Membro del Collaboration Group
;
Vincenzo Motta
Membro del Collaboration Group
;
Roberta Davoli
Membro del Collaboration Group
;
Leonardo Nanni Costa
Membro del Collaboration Group
;
Paolo Bosi
Membro del Collaboration Group
;
Paolo Trevisi
Membro del Collaboration Group
2018

Abstract

Background: Colostrum is the first secretion produced by mammary glands during the hours immediately preceding and succeeding parturition. This secretion differs from milk and represents an essential vehicle of passive immunity, prebiotic compounds and growth factors involved in intestinal development. Most of the literature concerning colostrum composition refers mainly to human and cow; and little is known about pig colostrum metabolome and how it varies between pig breeds and different farrowing parity. Thus, the aim of the present research is to provide new information about pig colostrum composition and the associations between metabolites, the sows' breed and the survival and growth rates of their litters. Results: Colostrum samples were gathered from 58 parturitions of sows belonging to three different breeds chosen for their importance in Italian heavy pig production: 31 Large White, 15 Landrace and 12 Duroc respectively. The defatted and ultrafiltered colostrum samples were analysed using1H-NMR spectroscopy. Principal Components Analysis (PCA) was assessed on the obtained spectra. In addition, using a Stepwise Regression and a Linear Regression analyses the metabolites named after the signals assignment were tested for their associations with piglets' performances. Twenty-five metabolites were identified, comprehending monosaccharides, disaccharides (such as lactose), organic acids (lactate, citrate, acetate and formate), nitrogenous organic acids (such as creatine) and other compounds, including nucleotides. PCA results evidence a clustering due to breed and season effects. Lactose was the main compound determining the assignment of the samples into different clusters according to the sow breed. Furthermore, some metabolites showed to be associated with piglets' performance and survival traits: acetate and taurine were positively related to litter weight gain and piglets' survival rate, respectively, while dimethylamine and cis-aconitate were linked to new-borns' impaired ability to survive. Conclusions: The results obtained suggest that colostrum composition is affected by breed, which, together with environmental conditions, may cause changes in colostrum metabolites content with possible consequences on piglets' performances. Among the identified metabolites, acetate, taurine, dimethylamine and cis-aconitate showed consistent associations with piglets' survival rate and litter weight gain, implying that these compounds may affect new-borns' ability to survive.
2018
Gianfranco Picone, M.Z. (2018). Metabolomics characterization of colostrum in three sow breeds and its influences on piglets' survival and litter growth rates. JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY, 9(23), 1-12 [10.1186/s40104-018-0237-1].
Gianfranco Picone, Martina Zappaterra, Diana Luise, Alessia Trimigno, Francesco Capozzi, Vincenzo Motta, Roberta Davoli, Leonardo Nanni Costa, Paolo B...espandi
File in questo prodotto:
File Dimensione Formato  
Picone JAnimalScienceBiotechnology2018_9.23.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/647227
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 39
social impact