Recent developments of the automotive compartment are challenging the capabilities of capacitors, with particular reference to film capacitors. Modern capacitors must have high reliability under mechanical shock, wide working temperature range and long lifetime. Therefore, there is an increasing demand for optimization tools, aimed at reducing the high temperature mechanical stresses on capacitor components that usually have remarkably different coefficients of thermal expansion. This work aims at analysing the main features that affect the mechanical response of a capacitor towards temperature changes. The key components have been experimentally characterized in terms of strength and stiffness as a function of temperature, by several strain analysis methods, such as strain gauges, digital image correlation or dynamic mechanical analysis. Then, a three-dimensional finite element model of the whole capacitor has been set up using the ANSYS code and made it possible to simulate the stress-strain response of each component, when a steady state thermal load is applied.
I recenti sviluppi in campo automobilistico stanno mettendo alla prova le prerogative dei condensatori, con particolare riferimento ai condensatori avvolti. I moderni condensatori devono avere elevata affidabilità in presenza di shock termici, ampio campo della temperatura di lavoro e lunga durata. Pertanto, vi è una crescente richiesta di strumenti di ottimizzazione, mirati alla riduzione delle tensioni meccaniche ad alta temperatura su componenti di condensatori, che presentano solitamente coefficienti di espansione termica fortemente differenti. Questo lavoro mira ad analizzare le principali caratteristiche che condizionano la risposta meccanica di un condensatore a seguito di sbalzi termici. I componenti chiave sono stati caratterizzati sperimentalmente in termini di resistenza e rigidezza in funzione della temperatura, tramite svariati metodi di analisi delle deformazioni, quali l’estensimetria, la correlazione digitale di immagini o la dynamic mechanical analysis. Un modello tridimensionale agli elementi finiti è stato poi sviluppato in ANSYS ed ha permesso di simulare la risposta tensione-deformazione di ciascun componente sotto un carico termico stazionario.
Croccolo, D., Brugo, T.M., De Agostinis, M., Fini, S., Olmi, G. (2016). Numerical and experimental analysis of the thermal-structural response of wound polymer capacitors.
Numerical and experimental analysis of the thermal-structural response of wound polymer capacitors
CROCCOLO, DARIO;BRUGO, TOMMASO MARIA;DE AGOSTINIS, MASSIMILIANO;FINI, STEFANO;OLMI, GIORGIO
2016
Abstract
Recent developments of the automotive compartment are challenging the capabilities of capacitors, with particular reference to film capacitors. Modern capacitors must have high reliability under mechanical shock, wide working temperature range and long lifetime. Therefore, there is an increasing demand for optimization tools, aimed at reducing the high temperature mechanical stresses on capacitor components that usually have remarkably different coefficients of thermal expansion. This work aims at analysing the main features that affect the mechanical response of a capacitor towards temperature changes. The key components have been experimentally characterized in terms of strength and stiffness as a function of temperature, by several strain analysis methods, such as strain gauges, digital image correlation or dynamic mechanical analysis. Then, a three-dimensional finite element model of the whole capacitor has been set up using the ANSYS code and made it possible to simulate the stress-strain response of each component, when a steady state thermal load is applied.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.