Keypoint detection represents the first stage in the majority of modern computer vision pipelines based on automatically established correspondences between local descriptors. However, no standard solution has emerged yet in the case of 3D data such as point clouds or meshes, which exhibit high variability in level of detail and noise. More importantly, existing proposals for 3D keypoint detection rely on geometric saliency functions that attempt to maximize repeatability rather than distinctiveness of the selected regions, which may lead to sub-optimal performance of the overall pipeline. To overcome these shortcomings, we cast 3D keypoint detection as a binary classification between points whose support can be correctly matched by a predefined 3D descriptor or not, thereby learning a descriptor-specific detector that adapts seamlessly to different scenarios. Through experiments on several public datasets, we show that this novel approach to the design of a keypoint detector represents a flexible solution that, nonetheless, can provide state-of-the-art descriptor matching performance.

Salti, S., Tombari, F., Spezialetti, R., Di Stefano, L. (2015). Learning a descriptor-specific 3D keypoint detector. Institute of Electrical and Electronics Engineers Inc. [10.1109/ICCV.2015.267].

Learning a descriptor-specific 3D keypoint detector

SALTI, SAMUELE;TOMBARI, FEDERICO;DI STEFANO, LUIGI
2015

Abstract

Keypoint detection represents the first stage in the majority of modern computer vision pipelines based on automatically established correspondences between local descriptors. However, no standard solution has emerged yet in the case of 3D data such as point clouds or meshes, which exhibit high variability in level of detail and noise. More importantly, existing proposals for 3D keypoint detection rely on geometric saliency functions that attempt to maximize repeatability rather than distinctiveness of the selected regions, which may lead to sub-optimal performance of the overall pipeline. To overcome these shortcomings, we cast 3D keypoint detection as a binary classification between points whose support can be correctly matched by a predefined 3D descriptor or not, thereby learning a descriptor-specific detector that adapts seamlessly to different scenarios. Through experiments on several public datasets, we show that this novel approach to the design of a keypoint detector represents a flexible solution that, nonetheless, can provide state-of-the-art descriptor matching performance.
2015
Proceedings of the IEEE International Conference on Computer Vision
2318
2326
Salti, S., Tombari, F., Spezialetti, R., Di Stefano, L. (2015). Learning a descriptor-specific 3D keypoint detector. Institute of Electrical and Electronics Engineers Inc. [10.1109/ICCV.2015.267].
Salti, Samuele; Tombari, Federico; Spezialetti, Riccardo; Di Stefano, Luigi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/554142
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 21
social impact