A small library of 2-phenoxy-1,4-naphthoquinone and 2-phenoxy-1,4-anthraquinone derivatives was initially developed to optimize the antitrypanosomatid profile of the multitarget hit compound B6 (1). The whole series was evaluated against the three most important human trypanosomatid pathogens (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, and Leishmania donovani), and two compounds (14 and 21) showed good activity, despite a concomitant mammalian cytotoxicity. Furthermore, a subset also inhibited the glycolytic TbGAPDH enzyme in vitro. In light of these results and aware of the antitumor properties of quinones, the anticancer potential of some selected derivatives was investigated. Intriguingly, the tested compounds displayed antitumor activity, while being less toxic against noncancerous cells. The observed cytotoxic potency was ascribed to a multitarget mechanism of action accounting for hGAPDH inhibition and mitochondrial toxicity. Overall, the development of further derivatives, able to finely modulate multiple pathways of cancer or parasite cell metabolism, might lead to more effective treatments against these devastating diseases.

2-Phenoxy-1,4-naphthoquinones: From a Multitarget Antitrypanosomal to a Potential Antitumor Profile

PRATI, FEDERICA;BERGAMINI, CHRISTIAN;FALCHI, FEDERICO;CAVALLI, ANDREA;FATO, ROMANA;BOLOGNESI, MARIA LAURA
2015

Abstract

A small library of 2-phenoxy-1,4-naphthoquinone and 2-phenoxy-1,4-anthraquinone derivatives was initially developed to optimize the antitrypanosomatid profile of the multitarget hit compound B6 (1). The whole series was evaluated against the three most important human trypanosomatid pathogens (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, and Leishmania donovani), and two compounds (14 and 21) showed good activity, despite a concomitant mammalian cytotoxicity. Furthermore, a subset also inhibited the glycolytic TbGAPDH enzyme in vitro. In light of these results and aware of the antitumor properties of quinones, the anticancer potential of some selected derivatives was investigated. Intriguingly, the tested compounds displayed antitumor activity, while being less toxic against noncancerous cells. The observed cytotoxic potency was ascribed to a multitarget mechanism of action accounting for hGAPDH inhibition and mitochondrial toxicity. Overall, the development of further derivatives, able to finely modulate multiple pathways of cancer or parasite cell metabolism, might lead to more effective treatments against these devastating diseases.
Prati, Federica; Bergamini, Christian; Molina, Maria Teresa; Falchi, Federico; Cavalli, Andrea; Kaiser, Marcel; Brun, Reto; Fato, Romana; Bolognesi, Maria Laura
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/525699
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 38
social impact