Chemical composition of Micromeria dalmatica essential oil (EO) by gas chromatography-mass spectrometry solid phase microextraction (GC/MS-SPME) analysis revealed that the dominant compounds were piperitenone (41.46%), pulegone (19.02%), piperitenone oxide (14.49%), d-limonene (6.23%) and p-menthone (5.06%). The minimum inhibitory concentration (MIC) ranged from 0.03 to 2.32mg/mL for bacteria, and from 0.62 to 2.49mg/mL for yeast strains, while the minimum bactericidal/yeast-cidal concentration (MBC/MYC) varied from 0.07 to 1.15mg/mL and 1.11-5.57mg/mL for bacteria and yeasts, respectively. Growth inhibition concentration (GIC50) that caused 50% of growth delay of Salmonella Typhimurium in pork meat system was calculated to be 0.048mg/mL. Experimental results suggest that M. dalmatica EO possess high antimicrobial efficacy against food spoilage microorganisms. The present study has certainly set up an attractive platform for commercial applications of EO as natural preservative in food, such as pork meat

Potential application of Micromeria dalmatica essential oil as a protective agent in a food system / Bukvicki, Danka; Stojkovic, Dejan; Sokovic, Marina; Nikolic, Milos; Vannini, Lucia; Montanari, Chiara; Marin, Petar D.. - In: LEBENSMITTEL-WISSENSCHAFT + TECHNOLOGIE. - ISSN 0023-6438. - STAMPA. - 63:1(2015), pp. 262-267. [10.1016/j.lwt.2015.03.053]

Potential application of Micromeria dalmatica essential oil as a protective agent in a food system

VANNINI, LUCIA;MONTANARI, CHIARA;
2015

Abstract

Chemical composition of Micromeria dalmatica essential oil (EO) by gas chromatography-mass spectrometry solid phase microextraction (GC/MS-SPME) analysis revealed that the dominant compounds were piperitenone (41.46%), pulegone (19.02%), piperitenone oxide (14.49%), d-limonene (6.23%) and p-menthone (5.06%). The minimum inhibitory concentration (MIC) ranged from 0.03 to 2.32mg/mL for bacteria, and from 0.62 to 2.49mg/mL for yeast strains, while the minimum bactericidal/yeast-cidal concentration (MBC/MYC) varied from 0.07 to 1.15mg/mL and 1.11-5.57mg/mL for bacteria and yeasts, respectively. Growth inhibition concentration (GIC50) that caused 50% of growth delay of Salmonella Typhimurium in pork meat system was calculated to be 0.048mg/mL. Experimental results suggest that M. dalmatica EO possess high antimicrobial efficacy against food spoilage microorganisms. The present study has certainly set up an attractive platform for commercial applications of EO as natural preservative in food, such as pork meat
2015
Potential application of Micromeria dalmatica essential oil as a protective agent in a food system / Bukvicki, Danka; Stojkovic, Dejan; Sokovic, Marina; Nikolic, Milos; Vannini, Lucia; Montanari, Chiara; Marin, Petar D.. - In: LEBENSMITTEL-WISSENSCHAFT + TECHNOLOGIE. - ISSN 0023-6438. - STAMPA. - 63:1(2015), pp. 262-267. [10.1016/j.lwt.2015.03.053]
Bukvicki, Danka; Stojkovic, Dejan; Sokovic, Marina; Nikolic, Milos; Vannini, Lucia; Montanari, Chiara; Marin, Petar D.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/523501
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact