Conversion of ornithine to putrescine by Salmonella Paratyphi A, Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli was investigated in ornithine decarboxylase broth (ODB) using cell-free supernatants (CFSs) obtained from Leuconostoc mesenterodies subsp. cremoris, Pediococcus acidilactici, Lactococcus lactis subsp. lactis, Streptococcus thermophilus. Two groups of cell-free supernatants (25 or 50%) and control (only ODB) were prepared to investigate putrescine (PUT) and other polyamine formation by foodborne pathogens (FBPs). Significant differences (p < 0.05) were observed among the species for each amine. All of the CFSs reduced the formation of PUT by ≥65%. The production of cadaverine (CAD) was scarcely affected by the presence of CFSs, with the exception of the samples inoculated with L. monocytogenes. The variation in polyamine was found with respect to the control samples. Spermidine (SPD) was produced in lower amount in many samples, especially in Gram-negative FBPs, whereas spermine (SPN) increased drastically in the major part of the samples concerning the control. Histamine (HIS) was characterized by a marked concentration decrease in all of the samples, and tyramine (TYR) was accumulated in very low concentrations in the controls. Therefore, the ability of bacteria to produce certain biogenic amines such as HIS, TYR, PUT, and CAD has been studied to assess their risk and prevent their formation in food products. The results obtained from this study concluded that the lactic acid bacteria (LAB) strains with non-decarboxylase activity are capable of avoiding or limiting biogenic amine formation by FBP.

Impact of Cell-free Supernatant of Lactic Acid Bacteria on Putrescine and Other Polyamine Formation by Foodborne Pathogens in Ornithine Decarboxylase Broth

TABANELLI, GIULIA;GARDINI, FAUSTO
2015

Abstract

Conversion of ornithine to putrescine by Salmonella Paratyphi A, Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli was investigated in ornithine decarboxylase broth (ODB) using cell-free supernatants (CFSs) obtained from Leuconostoc mesenterodies subsp. cremoris, Pediococcus acidilactici, Lactococcus lactis subsp. lactis, Streptococcus thermophilus. Two groups of cell-free supernatants (25 or 50%) and control (only ODB) were prepared to investigate putrescine (PUT) and other polyamine formation by foodborne pathogens (FBPs). Significant differences (p < 0.05) were observed among the species for each amine. All of the CFSs reduced the formation of PUT by ≥65%. The production of cadaverine (CAD) was scarcely affected by the presence of CFSs, with the exception of the samples inoculated with L. monocytogenes. The variation in polyamine was found with respect to the control samples. Spermidine (SPD) was produced in lower amount in many samples, especially in Gram-negative FBPs, whereas spermine (SPN) increased drastically in the major part of the samples concerning the control. Histamine (HIS) was characterized by a marked concentration decrease in all of the samples, and tyramine (TYR) was accumulated in very low concentrations in the controls. Therefore, the ability of bacteria to produce certain biogenic amines such as HIS, TYR, PUT, and CAD has been studied to assess their risk and prevent their formation in food products. The results obtained from this study concluded that the lactic acid bacteria (LAB) strains with non-decarboxylase activity are capable of avoiding or limiting biogenic amine formation by FBP.
2015
Ozogul, Fatih; Tabanelli, Giulia; Toy, Nurten; Gardini, Fausto
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/521528
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact