Beta Catenin signaling is critical for the self-renewal of leukemic stem cells in chronic myeloid leukemia. It is driven by multiple events, enhancing beta catenin stability and promoting its transcriptional co-activating function. We investigated the impact of BCR-ABL1 on Chibby1, a beta catenin antagonist involved in cell differentiation and transformation. Relative proximity of the Chibby1 encoding gene (C22orf2) on chromosome 22q12 to the BCR breakpoint (22q11) lets assume its involvement in beta catenin activation in chronic myeloid leukemia as a consequence of deletions of distal BCR sequences encompassing one C22orf2 allele. Forty patients with chronic myeloid leukemia in chronic phase were analyzed for C22orf2 relocation and Chibby1 expression. Fluorescent in situ hybridization analyses established that the entire C22orf2 follows BCR regardless of chromosomes involved in the translocation. In differentiated hematopoietic progenitors (bone marrow mononuclear cell fractions) of 30/40 patients, the expression of Chibby1 protein was reduced below 50% of the reference value (peripheral blood mononuclear cell fractions of healthy persons). In such cell context, Chibby1 protein reduction is not dependent on C22orf2 transcriptional downmodulation; however, it is strictly dependent upon BCR-ABL1 expression because it was not observed at the moment of major molecular response under tyrosine kinase inhibitor therapy. Moreover, it was not correlated with the disease prognosis or response to therapy. Most importantly, a remarkable Chibby1 reduction was apparent in a putative BCR-ABL1+ leukemic stem cell compartment identified by a CD34+ phenotype compared to more differentiated hematopoietic progenitors. In CD34+ cells, Chibby1 reduction arises from transcriptional events and is driven by C22orf2 promoter hypermethylation. These results advance low Chibby1 expression associated with BCR-ABL1 as a component of beta catenin signaling in leukemic stem cells.

BCR-ABL1-associated reduction of beta catenin antagonist Chibby1 in chronic myeloid leukemia / Leo E;Mancini M;Aluigi M;Luatti S;Castagnetti F;Testoni N;Soverini S;Santucci MA;Martinelli G. - In: PLOS ONE. - ISSN 1932-6203. - ELETTRONICO. - 8:12(2013), pp. e81425.1-e81425.10. [10.1371/journal.pone.0081425]

BCR-ABL1-associated reduction of beta catenin antagonist Chibby1 in chronic myeloid leukemia.

LEO, ELISA;MANCINI, MANUELA;ALUIGI, MICHELA;LUATTI, SIMONA;CASTAGNETTI, FAUSTO;TESTONI, NICOLETTA;SOVERINI, SIMONA;Santucci MA;MARTINELLI, GIOVANNI
2013

Abstract

Beta Catenin signaling is critical for the self-renewal of leukemic stem cells in chronic myeloid leukemia. It is driven by multiple events, enhancing beta catenin stability and promoting its transcriptional co-activating function. We investigated the impact of BCR-ABL1 on Chibby1, a beta catenin antagonist involved in cell differentiation and transformation. Relative proximity of the Chibby1 encoding gene (C22orf2) on chromosome 22q12 to the BCR breakpoint (22q11) lets assume its involvement in beta catenin activation in chronic myeloid leukemia as a consequence of deletions of distal BCR sequences encompassing one C22orf2 allele. Forty patients with chronic myeloid leukemia in chronic phase were analyzed for C22orf2 relocation and Chibby1 expression. Fluorescent in situ hybridization analyses established that the entire C22orf2 follows BCR regardless of chromosomes involved in the translocation. In differentiated hematopoietic progenitors (bone marrow mononuclear cell fractions) of 30/40 patients, the expression of Chibby1 protein was reduced below 50% of the reference value (peripheral blood mononuclear cell fractions of healthy persons). In such cell context, Chibby1 protein reduction is not dependent on C22orf2 transcriptional downmodulation; however, it is strictly dependent upon BCR-ABL1 expression because it was not observed at the moment of major molecular response under tyrosine kinase inhibitor therapy. Moreover, it was not correlated with the disease prognosis or response to therapy. Most importantly, a remarkable Chibby1 reduction was apparent in a putative BCR-ABL1+ leukemic stem cell compartment identified by a CD34+ phenotype compared to more differentiated hematopoietic progenitors. In CD34+ cells, Chibby1 reduction arises from transcriptional events and is driven by C22orf2 promoter hypermethylation. These results advance low Chibby1 expression associated with BCR-ABL1 as a component of beta catenin signaling in leukemic stem cells.
2013
BCR-ABL1-associated reduction of beta catenin antagonist Chibby1 in chronic myeloid leukemia / Leo E;Mancini M;Aluigi M;Luatti S;Castagnetti F;Testoni N;Soverini S;Santucci MA;Martinelli G. - In: PLOS ONE. - ISSN 1932-6203. - ELETTRONICO. - 8:12(2013), pp. e81425.1-e81425.10. [10.1371/journal.pone.0081425]
Leo E;Mancini M;Aluigi M;Luatti S;Castagnetti F;Testoni N;Soverini S;Santucci MA;Martinelli G
File in questo prodotto:
File Dimensione Formato  
Leo et al_PONE2013.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/394976
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact