Attitude regulation proves to be a challenging problem, when magnetic actuators alone are used as attitude effectors, since they do not provide three independent control torque components at each time instant. In this paper a rigorous proof of global exponential stability is derived for a magnetic control law that leads the satellite to a desired spin condition around a principal axis of inertia, pointing the spin axis toward a prescribed direction in the inertial frame. The technique is demonstrated by means of numerical simulation of a few example maneuvers. An extensive Monte Carlo simulation is performed for random initial conditions, in order to investigate the effect of changes in control law gains.

Spin-axis pointing of a magnetically actuated spacecraft

DE ANGELIS, EMANUELE LUIGI;GIULIETTI, FABRIZIO
2014

Abstract

Attitude regulation proves to be a challenging problem, when magnetic actuators alone are used as attitude effectors, since they do not provide three independent control torque components at each time instant. In this paper a rigorous proof of global exponential stability is derived for a magnetic control law that leads the satellite to a desired spin condition around a principal axis of inertia, pointing the spin axis toward a prescribed direction in the inertial frame. The technique is demonstrated by means of numerical simulation of a few example maneuvers. An extensive Monte Carlo simulation is performed for random initial conditions, in order to investigate the effect of changes in control law gains.
2014
G. Avanzini;E.L. de Angelis;F. Giulietti
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/317922
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 18
social impact