Although successfully employed on many industrial problems, Combinatorial Optimization still has limited applicability on several real-world domains, often due to modeling difficulties. This is typically the case for systems under the control of an on-line policy: even when the policy itself is well known, capturing its effect on the system in a declarative model is often impossible by conventional means. Such a difficulty is at the root of the classical, sharp separation between off-line and on-line approaches. In this paper, we investigate a general method to model controlled systems, based on the integration of Machine Learning and Constraint Programming (CP). Specifically, we use an Artificial Neural Network (ANN) to learn the behavior of a controlled system (a multicore CPU with thermal controllers) and plug it into a CP model by means of Neuron Constraints. The method obtains significantly better results compared to an approach with no ANN guidance. Neuron Constraints were first introduced in (Bartolini et al. 2011b) as a mean to model complex systems: providing evidence of their applicability to controlled systems is a significant step forward, broadening the application field of combinatorial methods and disclosing opportunities for hybrid off-line/on-line optimization.
Bartolini A., Lombardi M., Milano M., Benini L. (2012). Optimization and Controlled Systems: A Case Study on Thermal Aware Workload Dispatching. Palo Alto : Association for the Advancement of Artificial Intelligence.
Optimization and Controlled Systems: A Case Study on Thermal Aware Workload Dispatching
BARTOLINI, ANDREA;LOMBARDI, MICHELE;MILANO, MICHELA;BENINI, LUCA
2012
Abstract
Although successfully employed on many industrial problems, Combinatorial Optimization still has limited applicability on several real-world domains, often due to modeling difficulties. This is typically the case for systems under the control of an on-line policy: even when the policy itself is well known, capturing its effect on the system in a declarative model is often impossible by conventional means. Such a difficulty is at the root of the classical, sharp separation between off-line and on-line approaches. In this paper, we investigate a general method to model controlled systems, based on the integration of Machine Learning and Constraint Programming (CP). Specifically, we use an Artificial Neural Network (ANN) to learn the behavior of a controlled system (a multicore CPU with thermal controllers) and plug it into a CP model by means of Neuron Constraints. The method obtains significantly better results compared to an approach with no ANN guidance. Neuron Constraints were first introduced in (Bartolini et al. 2011b) as a mean to model complex systems: providing evidence of their applicability to controlled systems is a significant step forward, broadening the application field of combinatorial methods and disclosing opportunities for hybrid off-line/on-line optimization.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.