Lowering supply voltage is still the most effective technique to reduce dynamic power, and Vdd is being pushed toward the threshold voltage for ultra-low power applications. However, near-threshold circuit leakage power is comparable to the switching power and performance is highly sensitive to static and dynamic threshold voltage variations. This makes designing circuits for a target performance very difficult, and post-silicon tunability is required to achieve performance targets without taking huge design margins. In this work, we tackle this problem by proposing a novel dual-Vdd technique for near-threshold operation and show that one can tune the performance of a circuit in a fine-grained manner by powering an optimal sub-set of rows with a slightly higher supply voltage than the rest, without incurring the large cost of distributed level shifters. By varying the percentage of rows at a slightly higher voltage, one can trade off performance and power in a fine-grained manner. This style is fully compatible with state-of-the-art commercial physical design flows and imposesminimal area blow-up. It can be applied without any placement disruption on a fully placed design. Experimental results show that by employing our dual-Vdd technique, we can improve the performance of several benchmarks up to 45% while achieving more than 50% lower power as compared to singleimplementations.

Kakoee M.R., Benini L. (2012). Robust Near-Threshold Design With Fine-Grained Performance Tunability. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS, 59, 1815-1825 [10.1109/TCSI.2011.2180440].

Robust Near-Threshold Design With Fine-Grained Performance Tunability

KAKOEE, MOHAMMAD REZA;BENINI, LUCA
2012

Abstract

Lowering supply voltage is still the most effective technique to reduce dynamic power, and Vdd is being pushed toward the threshold voltage for ultra-low power applications. However, near-threshold circuit leakage power is comparable to the switching power and performance is highly sensitive to static and dynamic threshold voltage variations. This makes designing circuits for a target performance very difficult, and post-silicon tunability is required to achieve performance targets without taking huge design margins. In this work, we tackle this problem by proposing a novel dual-Vdd technique for near-threshold operation and show that one can tune the performance of a circuit in a fine-grained manner by powering an optimal sub-set of rows with a slightly higher supply voltage than the rest, without incurring the large cost of distributed level shifters. By varying the percentage of rows at a slightly higher voltage, one can trade off performance and power in a fine-grained manner. This style is fully compatible with state-of-the-art commercial physical design flows and imposesminimal area blow-up. It can be applied without any placement disruption on a fully placed design. Experimental results show that by employing our dual-Vdd technique, we can improve the performance of several benchmarks up to 45% while achieving more than 50% lower power as compared to singleimplementations.
2012
Kakoee M.R., Benini L. (2012). Robust Near-Threshold Design With Fine-Grained Performance Tunability. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS, 59, 1815-1825 [10.1109/TCSI.2011.2180440].
Kakoee M.R.; Benini L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/132956
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact