Energy efficiency is the key driver for the design optimization of System-on-Chips for mobile terminals (smartphones and tablets). 3D integration of heterogeneous dies based on TSV (through silicon via) technology enables stacking of multiple memory or logic layers and has the advantage of higher bandwidth at lower energy consumption for the memory interface. In this work we propose a highly energy efficient DRAM subsystem for next-generation 3D integrated SoCs, which will consist of a SDR/DDR 3D-DRAM controller and an attached 3D-DRAM cube with a fine-grained access and a very flexible (WIDE-IO) interface. We implemented a synthesizable model of the SDR/DDR 3D-DRAM channel controller and a functional model of the 3D-stacked DRAM which embeds an accurate power estimation engine. We investigated different DRAM families (WIDE IO DDR/SDR, LPDDR and LPDDR2) and densities that range from 256Mb to 4Gb per channel. The implementation results of the proposed 3D-DRAM subsystem show that energy optimized accesses to the 3D-DRAM enable an overall average of 37% power savings as compared to standard accesses. To the best of our knowledge this is the first design of a 3D-DRAM channel controller and 3D-DRAM model featuring co-optimization of memory and controller architecture.

Weis C., Loi I. , Benini L. , Wehn N. (2012). An energy efficient DRAM subsystem for 3D integrated SoCs. NEW YORK : IEEE Press [10.1109/DATE.2012.6176668].

An energy efficient DRAM subsystem for 3D integrated SoCs

LOI, IGOR;BENINI, LUCA;
2012

Abstract

Energy efficiency is the key driver for the design optimization of System-on-Chips for mobile terminals (smartphones and tablets). 3D integration of heterogeneous dies based on TSV (through silicon via) technology enables stacking of multiple memory or logic layers and has the advantage of higher bandwidth at lower energy consumption for the memory interface. In this work we propose a highly energy efficient DRAM subsystem for next-generation 3D integrated SoCs, which will consist of a SDR/DDR 3D-DRAM controller and an attached 3D-DRAM cube with a fine-grained access and a very flexible (WIDE-IO) interface. We implemented a synthesizable model of the SDR/DDR 3D-DRAM channel controller and a functional model of the 3D-stacked DRAM which embeds an accurate power estimation engine. We investigated different DRAM families (WIDE IO DDR/SDR, LPDDR and LPDDR2) and densities that range from 256Mb to 4Gb per channel. The implementation results of the proposed 3D-DRAM subsystem show that energy optimized accesses to the 3D-DRAM enable an overall average of 37% power savings as compared to standard accesses. To the best of our knowledge this is the first design of a 3D-DRAM channel controller and 3D-DRAM model featuring co-optimization of memory and controller architecture.
2012
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012
1138
1141
Weis C., Loi I. , Benini L. , Wehn N. (2012). An energy efficient DRAM subsystem for 3D integrated SoCs. NEW YORK : IEEE Press [10.1109/DATE.2012.6176668].
Weis C.; Loi I. ; Benini L. ; Wehn N.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/132667
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact