Template matching is a computationally intensive problem aimed at locating a template within a image. When dealing with images having more than one channel, the computational burden becomes even more dramatic. For this reason, in this paper we investigate on a methodology to speed-up template matching on multi-channel images without deteriorating the outcome of the search. In particular, we propose a fast, exhaustive technique based on the Zero-mean Normalized Cross-Correlation (ZNCC) inspired from previous work related to grayscale images. Experimental testing performed over thousands of template matching instances demonstrates the efficiency of our proposal.

Efficient template matching for multi-channel images

MATTOCCIA, STEFANO;TOMBARI, FEDERICO;DI STEFANO, LUIGI
2011

Abstract

Template matching is a computationally intensive problem aimed at locating a template within a image. When dealing with images having more than one channel, the computational burden becomes even more dramatic. For this reason, in this paper we investigate on a methodology to speed-up template matching on multi-channel images without deteriorating the outcome of the search. In particular, we propose a fast, exhaustive technique based on the Zero-mean Normalized Cross-Correlation (ZNCC) inspired from previous work related to grayscale images. Experimental testing performed over thousands of template matching instances demonstrates the efficiency of our proposal.
2011
S. Mattoccia; F. Tombari; L. Di Stefano
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/106134
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 28
social impact