Portable and wearable sensors have gained attention in the recent years to perform measurements in many different applications. Sensors based on Electrical Impedance Spectroscopy (EIS) are particularly promising, because they can make accurate measurements with minimum perturbation to the sample under test. Electrochemical biosensors are devices that use electrochemical techniques to measure a target analyte. In the case of electrochemical biosensors based on EIS, the measured impedance spectrum is fitted to that of an equivalent electrical circuit, whose component values are then used to estimate the concentration of the target analyte. EIS data fitting is usually carried out by sophisticated algorithms running on a PC. In this paper, we have evaluated the feasibility to perform EIS data fitting using simple Artificial Neural Networks (ANNs) that can be run on resource constrained microcontrollers, which are typically used for portable and wearable sensors. We considered a typical case of an impedance spectrum in the range 0.1Hz – 10 kHz, modelled by using the simplified Randles equivalent circuit. Our analyses have shown that simple ANNs can be a low power alternative to perform EIS data fitting on low-cost microcontrollers with a memory occupation in the order of kilo bytes and a measurement accuracy between 1% and 3%.
Grossi, M., Omana, M. (2025). Data Analysis of Electrical Impedance Spectroscopy-Based Biosensors Using Artificial Neural Networks for Resource Constrained Devices. JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS, 15(4), 1-18 [10.3390/jlpea15040056].
Data Analysis of Electrical Impedance Spectroscopy-Based Biosensors Using Artificial Neural Networks for Resource Constrained Devices
M. Grossi;M. Omana
2025
Abstract
Portable and wearable sensors have gained attention in the recent years to perform measurements in many different applications. Sensors based on Electrical Impedance Spectroscopy (EIS) are particularly promising, because they can make accurate measurements with minimum perturbation to the sample under test. Electrochemical biosensors are devices that use electrochemical techniques to measure a target analyte. In the case of electrochemical biosensors based on EIS, the measured impedance spectrum is fitted to that of an equivalent electrical circuit, whose component values are then used to estimate the concentration of the target analyte. EIS data fitting is usually carried out by sophisticated algorithms running on a PC. In this paper, we have evaluated the feasibility to perform EIS data fitting using simple Artificial Neural Networks (ANNs) that can be run on resource constrained microcontrollers, which are typically used for portable and wearable sensors. We considered a typical case of an impedance spectrum in the range 0.1Hz – 10 kHz, modelled by using the simplified Randles equivalent circuit. Our analyses have shown that simple ANNs can be a low power alternative to perform EIS data fitting on low-cost microcontrollers with a memory occupation in the order of kilo bytes and a measurement accuracy between 1% and 3%.| File | Dimensione | Formato | |
|---|---|---|---|
|
jlpea-15-00056-v2.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.89 MB
Formato
Adobe PDF
|
2.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


