This study investigates the cooperative transport of a cable-suspended payload by two multirotor unmanned aerial vehicles (UAVs). A compact nonlinear control law that allows to simultaneously (i) track a slow reference trajectory, (ii) hold a prescribed inter-vehicle geometry, and (iii) actively damp load swing is developed. The model treats the two aerial robots and the payload as three point masses connected by linear-elastic cables, and the controller is obtained through a Newton–Euler formulation. A singular-perturbation analysis shows that, under modest gain–separation conditions, the closed-loop system is locally exponentially stable: fast dynamics govern formation holding and swing suppression, while slow dynamics takes into account trajectory tracking. Validation is performed in a realistic simulation scenario that includes six-degree-of-freedom rigid-body vehicles, Blade-Element theory rotor models, and sensor noise. Compared to an off-the-shelf, baseline controller, the proposed method significantly improves flying qualities while minimizing hazardous payload oscillations. Owing to its limited parameter set and the absence of heavy optimization, the approach is easy to tune and well suited for real-time implementation on resource-limited UAVs.
Costantini, E., De Angelis, E.L., Giulietti, F. (2025). Two-Time-Scale Cooperative UAV Transportation of a Cable-Suspended Load: A Minimal Swing Approach. DRONES, 9(8), 1-23 [10.3390/drones9080559].
Two-Time-Scale Cooperative UAV Transportation of a Cable-Suspended Load: A Minimal Swing Approach
Costantini, Elia
;de Angelis, Emanuele Luigi;Giulietti, Fabrizio
2025
Abstract
This study investigates the cooperative transport of a cable-suspended payload by two multirotor unmanned aerial vehicles (UAVs). A compact nonlinear control law that allows to simultaneously (i) track a slow reference trajectory, (ii) hold a prescribed inter-vehicle geometry, and (iii) actively damp load swing is developed. The model treats the two aerial robots and the payload as three point masses connected by linear-elastic cables, and the controller is obtained through a Newton–Euler formulation. A singular-perturbation analysis shows that, under modest gain–separation conditions, the closed-loop system is locally exponentially stable: fast dynamics govern formation holding and swing suppression, while slow dynamics takes into account trajectory tracking. Validation is performed in a realistic simulation scenario that includes six-degree-of-freedom rigid-body vehicles, Blade-Element theory rotor models, and sensor noise. Compared to an off-the-shelf, baseline controller, the proposed method significantly improves flying qualities while minimizing hazardous payload oscillations. Owing to its limited parameter set and the absence of heavy optimization, the approach is easy to tune and well suited for real-time implementation on resource-limited UAVs.| File | Dimensione | Formato | |
|---|---|---|---|
|
drones-09-00559-v2.pdf
accesso aperto
Descrizione: VoR
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Creative commons
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


