Low-precision floating-point (FP) formats have recently been intensely investigated in the context of machine learning inference and training applications. While 16-bit formats are already widely used, 8-bit FP data types have lately emerged as a viable option for neural network training when employed in a mixed-precision scenario and combined with rounding methods increasing the precision in compound additions, such as stochastic rounding. So far, hardware implementations supporting FP8 are mostly implemented within domain-specific accelerators. We propose two RISC-V instruction set architecture (ISA) extensions, enhancing respectively scalar and vector general-purpose cores with low and mixed-precision capabilities. The extensions support two 8-bit and two 16-bit FP formats and are based on dot-product instructions accumulating at higher precision. We develop a hardware unit supporting mixed-precision dot products and stochastic rounding and integrate it into an open-source floating-point unit (FPU). Finally, we integrate the enhanced FPU into a cluster of scalar cores, as well as a cluster of vector cores, and implement them in a 12 nm FinFET technology. The former achieves 575 GFLOPS/W on FP8-to-FP16 matrix multiplications at 0.8 V, 1.26 GHz; the latter reaches 860 GFLOPS/W at 0.8 V, 1.08 GHz, 1.93x higher efficiency than computing on FP16-to-FP32.

Bertaccini, L., Paulin, G., Cavalcante, M., Fischer, T., Mach, S., Benini, L. (2024). MiniFloats on RISC-V Cores: ISA Extensions With Mixed-Precision Short Dot Products. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 12(4), 1040-1055 [10.1109/TETC.2024.3365354].

MiniFloats on RISC-V Cores: ISA Extensions With Mixed-Precision Short Dot Products

Bertaccini L.;Paulin G.;Benini L.
2024

Abstract

Low-precision floating-point (FP) formats have recently been intensely investigated in the context of machine learning inference and training applications. While 16-bit formats are already widely used, 8-bit FP data types have lately emerged as a viable option for neural network training when employed in a mixed-precision scenario and combined with rounding methods increasing the precision in compound additions, such as stochastic rounding. So far, hardware implementations supporting FP8 are mostly implemented within domain-specific accelerators. We propose two RISC-V instruction set architecture (ISA) extensions, enhancing respectively scalar and vector general-purpose cores with low and mixed-precision capabilities. The extensions support two 8-bit and two 16-bit FP formats and are based on dot-product instructions accumulating at higher precision. We develop a hardware unit supporting mixed-precision dot products and stochastic rounding and integrate it into an open-source floating-point unit (FPU). Finally, we integrate the enhanced FPU into a cluster of scalar cores, as well as a cluster of vector cores, and implement them in a 12 nm FinFET technology. The former achieves 575 GFLOPS/W on FP8-to-FP16 matrix multiplications at 0.8 V, 1.26 GHz; the latter reaches 860 GFLOPS/W at 0.8 V, 1.08 GHz, 1.93x higher efficiency than computing on FP16-to-FP32.
2024
Bertaccini, L., Paulin, G., Cavalcante, M., Fischer, T., Mach, S., Benini, L. (2024). MiniFloats on RISC-V Cores: ISA Extensions With Mixed-Precision Short Dot Products. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 12(4), 1040-1055 [10.1109/TETC.2024.3365354].
Bertaccini, L.; Paulin, G.; Cavalcante, M.; Fischer, T.; Mach, S.; Benini, L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1004694
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact