In the present study, bio-based polymeric blends have been prepared for applications in the field of sustainable food packaging, starting from two furan-based homopolymers, poly(hexamethylene 2,5-furanoate) (PHF) and poly(pentamethylene 2,5-furanoate) (PPeF). PHF and PPeF were synthesized by two-step melt polycondensation—a solvent-free synthetic strategy—and then binary physical mixtures, PHF/PPeF, with different weight compositions were prepared by dissolution in a common solvent. The blends were processed into compression-moulded films, and molecular, morphological, structural, thermal, and mechanical characterizations were subsequently carried out. Blending did not negatively affect the thermal stability of the parent homopolymers, and good compatibility between them was observed. This strategy also allowed for the modulation of the chain rigidity as well as of the crystallinity, simply by acting on the relative weight amount of the homopolymers. From a mechanical point of view, the presence of PPeF led to a reduction in stiffness and an increase in the elongation at break, obtaining materials with an elastomeric behaviour. Evaluation of the gas barrier properties confirmed that the good barrier properties of PHF were preserved by blending. Finally, lab-scale composting tests confirmed a greater weight loss of the mixtures with respect to the PHF homopolymer.

Guidotti, G., Palumbo, A., Soccio, M., Gazzano, M., Salatelli, E., Siracusa, V.M., et al. (2024). Fully Bio-Based Blends of Poly (Pentamethylene Furanoate) and Poly (Hexamethylene Furanoate) for Sustainable and Flexible Packaging. POLYMERS, 16(16), 1-17 [10.3390/polym16162342].

Fully Bio-Based Blends of Poly (Pentamethylene Furanoate) and Poly (Hexamethylene Furanoate) for Sustainable and Flexible Packaging

Guidotti G.
Primo
;
Palumbo A.;Soccio M.;Gazzano M.;Salatelli E.;Lotti N.
2024

Abstract

In the present study, bio-based polymeric blends have been prepared for applications in the field of sustainable food packaging, starting from two furan-based homopolymers, poly(hexamethylene 2,5-furanoate) (PHF) and poly(pentamethylene 2,5-furanoate) (PPeF). PHF and PPeF were synthesized by two-step melt polycondensation—a solvent-free synthetic strategy—and then binary physical mixtures, PHF/PPeF, with different weight compositions were prepared by dissolution in a common solvent. The blends were processed into compression-moulded films, and molecular, morphological, structural, thermal, and mechanical characterizations were subsequently carried out. Blending did not negatively affect the thermal stability of the parent homopolymers, and good compatibility between them was observed. This strategy also allowed for the modulation of the chain rigidity as well as of the crystallinity, simply by acting on the relative weight amount of the homopolymers. From a mechanical point of view, the presence of PPeF led to a reduction in stiffness and an increase in the elongation at break, obtaining materials with an elastomeric behaviour. Evaluation of the gas barrier properties confirmed that the good barrier properties of PHF were preserved by blending. Finally, lab-scale composting tests confirmed a greater weight loss of the mixtures with respect to the PHF homopolymer.
2024
Guidotti, G., Palumbo, A., Soccio, M., Gazzano, M., Salatelli, E., Siracusa, V.M., et al. (2024). Fully Bio-Based Blends of Poly (Pentamethylene Furanoate) and Poly (Hexamethylene Furanoate) for Sustainable and Flexible Packaging. POLYMERS, 16(16), 1-17 [10.3390/polym16162342].
Guidotti, G.; Palumbo, A.; Soccio, M.; Gazzano, M.; Salatelli, E.; Siracusa, V. M.; Lotti, N.
File in questo prodotto:
File Dimensione Formato  
PPeF PHF polymers-16-02342.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.6 MB
Formato Adobe PDF
3.6 MB Adobe PDF Visualizza/Apri
polymers-3153090-supplementary-update.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 445.19 kB
Formato Adobe PDF
445.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1001970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact