BACKGROUND AND OBJECTIVES:Frameless deep brain stimulation (DBS) offers advantages in terms of patient comfort and reduced operative time. However, the need for bony fiducial markers for localization remains a drawback due to the time-consuming and uncomfortable procedure. An alternative localization method involves the direct tracking of an intraoperative 3-dimensional scanner. This study aims to assess the accuracy of the NexFrame frameless DBS system in conjunction with the O-Arm (Medtronic Inc.), both with and without fiducial markers.METHODS:The locations of 100 DBS leads were determined, with 50 cases using fiducial-free localization and 50 involving fiducial markers. The coordinates were compared with the expected intraoperative targets. Absolute errors in the X, Y, and Z coordinates (ΔX, ΔY, and ΔZ) were calculated, along with the vector error (Euclidean) (vector error =Δx2+Δy2+Δz2).RESULTS:The vector error averaged 1.61 ± 0.49 mm (right) and 1.52 ± 0.60 mm (left) for the group without fiducial bone markers and 1.66 ± 0.69 (right) and 1.44 ± 0.65 mm (left) for the other cohort (P =.76 right; P =.67 left). Absolute errors in the X, Y, and Z coordinates for the fiducial-free group were 0.88 ± 0.55, 0.79 ± 0.45, and 0.79 ± 0.57 mm (right) and 0.72 ± 0.37, 0.78 ± 0.56, and 0.77 ± 0.71 mm (left). For the group with fiducial markers, these errors were 0.87 ± 0.72, 0.92 ± 0.39, and 0.86 ± 0.50 mm (right) and 0.75 ± 0.33, 0.80 ± 0.51, and 0.73 ± 0.64 mm (left) with no statistically significant difference.CONCLUSION:Our analysis of the accuracy of NexFrame DBS, both with and without fiducial markers, using an intraoperative navigable cone-beam computed tomography, demonstrates that both techniques provide sufficient and equivalent 3-dimensional accuracy.

Picciano, C.P., Mantovani, P., Rosetti, V., Giannini, G., Pegoli, M., Castioni, C.A., et al. (2024). How Accurate Is Frameless Fiducial—Free Deep Brain Stimulation?. OPERATIVE NEUROSURGERY, 27(4), 431-439 [10.1227/ons.0000000000001151].

How Accurate Is Frameless Fiducial—Free Deep Brain Stimulation?

Picciano, Canio Pietro;Rosetti, Vittoria;Giannini, Giulia;Pegoli, Marianna;Cani, Ilaria;Baldelli, Luca;Cortelli, Pietro;Conti, Alfredo
2024

Abstract

BACKGROUND AND OBJECTIVES:Frameless deep brain stimulation (DBS) offers advantages in terms of patient comfort and reduced operative time. However, the need for bony fiducial markers for localization remains a drawback due to the time-consuming and uncomfortable procedure. An alternative localization method involves the direct tracking of an intraoperative 3-dimensional scanner. This study aims to assess the accuracy of the NexFrame frameless DBS system in conjunction with the O-Arm (Medtronic Inc.), both with and without fiducial markers.METHODS:The locations of 100 DBS leads were determined, with 50 cases using fiducial-free localization and 50 involving fiducial markers. The coordinates were compared with the expected intraoperative targets. Absolute errors in the X, Y, and Z coordinates (ΔX, ΔY, and ΔZ) were calculated, along with the vector error (Euclidean) (vector error =Δx2+Δy2+Δz2).RESULTS:The vector error averaged 1.61 ± 0.49 mm (right) and 1.52 ± 0.60 mm (left) for the group without fiducial bone markers and 1.66 ± 0.69 (right) and 1.44 ± 0.65 mm (left) for the other cohort (P =.76 right; P =.67 left). Absolute errors in the X, Y, and Z coordinates for the fiducial-free group were 0.88 ± 0.55, 0.79 ± 0.45, and 0.79 ± 0.57 mm (right) and 0.72 ± 0.37, 0.78 ± 0.56, and 0.77 ± 0.71 mm (left). For the group with fiducial markers, these errors were 0.87 ± 0.72, 0.92 ± 0.39, and 0.86 ± 0.50 mm (right) and 0.75 ± 0.33, 0.80 ± 0.51, and 0.73 ± 0.64 mm (left) with no statistically significant difference.CONCLUSION:Our analysis of the accuracy of NexFrame DBS, both with and without fiducial markers, using an intraoperative navigable cone-beam computed tomography, demonstrates that both techniques provide sufficient and equivalent 3-dimensional accuracy.
2024
Picciano, C.P., Mantovani, P., Rosetti, V., Giannini, G., Pegoli, M., Castioni, C.A., et al. (2024). How Accurate Is Frameless Fiducial—Free Deep Brain Stimulation?. OPERATIVE NEUROSURGERY, 27(4), 431-439 [10.1227/ons.0000000000001151].
Picciano, Canio Pietro; Mantovani, Paolo; Rosetti, Vittoria; Giannini, Giulia; Pegoli, Marianna; Castioni, Carlo Alberto; Cani, Ilaria; Baldelli, Luca...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1001413
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact