With the recent growth in data availability and complexity, and the associated outburst of elaborate modelling approaches, model selection tools have become a lifeline, providing objective criteria to deal with this increasingly challenging landscape. In fact, basing predictions and inference on a single model may be limiting if not harmful; ensemble approaches, which combine different models, have been proposed to overcome the selection step, and proven fruitful especially in the supervised learning framework. Conversely, these approaches have been scantily explored in the unsupervised setting. In this work we focus on the model-based clustering formulation, where a plethora of mixture models, with different number of components and parametrizations, is typically estimated. We propose an ensemble clustering approach that circumvents the single best model paradigm, while improving stability and robustness of the partitions. A new density estimator, being a convex linear combination of the density estimates in the ensemble, is introduced and exploited for group assignment. As opposed to the standard case, where clusters are typically associated to the components of the selected mixture model, we define partitions by borrowing the modal, or nonparametric, formulation of the clustering problem, where groups are linked with high-density regions. Staying in the density-based realm we thus show how blending together parametric and nonparametric approaches may be beneficial from a clustering perspective.

Casa, A., Scrucca, L., Menardi, G. (2021). Better than the best? Answers via model ensemble in density-based clustering. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 15(3 (September)), 599-623 [10.1007/s11634-020-00423-6].

Better than the best? Answers via model ensemble in density-based clustering

Scrucca L.;
2021

Abstract

With the recent growth in data availability and complexity, and the associated outburst of elaborate modelling approaches, model selection tools have become a lifeline, providing objective criteria to deal with this increasingly challenging landscape. In fact, basing predictions and inference on a single model may be limiting if not harmful; ensemble approaches, which combine different models, have been proposed to overcome the selection step, and proven fruitful especially in the supervised learning framework. Conversely, these approaches have been scantily explored in the unsupervised setting. In this work we focus on the model-based clustering formulation, where a plethora of mixture models, with different number of components and parametrizations, is typically estimated. We propose an ensemble clustering approach that circumvents the single best model paradigm, while improving stability and robustness of the partitions. A new density estimator, being a convex linear combination of the density estimates in the ensemble, is introduced and exploited for group assignment. As opposed to the standard case, where clusters are typically associated to the components of the selected mixture model, we define partitions by borrowing the modal, or nonparametric, formulation of the clustering problem, where groups are linked with high-density regions. Staying in the density-based realm we thus show how blending together parametric and nonparametric approaches may be beneficial from a clustering perspective.
2021
Casa, A., Scrucca, L., Menardi, G. (2021). Better than the best? Answers via model ensemble in density-based clustering. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 15(3 (September)), 599-623 [10.1007/s11634-020-00423-6].
Casa, A.; Scrucca, L.; Menardi, G.
File in questo prodotto:
File Dimensione Formato  
s11634-020-00423-6.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 806.34 kB
Formato Adobe PDF
806.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/997656
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact