Finite mixture models are being used increasingly to model a wide variety of random phenomena for clustering, classification and density estimation. mclust is a powerful and popular package which allows modelling of data as a Gaussian finite mixture with different covariance structures and different numbers of mixture components, for a variety of purposes of analysis. Recently, version 5 of the package has been made available on CRAN. This updated version adds new covariance structures, dimension reduction capabilities for visualisation, model selection criteria, initialisation strategies for the EM algorithm, and bootstrap-based inference, making it a full-featured R package for data analysis via finite mixture modelling.

Scrucca, L., Fop, M., Murphy, T.B., Raftery, A.E. (2016). Mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. THE R JOURNAL, 8(1), 289-317 [10.32614/rj-2016-021].

Mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models

Scrucca L.
;
Fop M.;
2016

Abstract

Finite mixture models are being used increasingly to model a wide variety of random phenomena for clustering, classification and density estimation. mclust is a powerful and popular package which allows modelling of data as a Gaussian finite mixture with different covariance structures and different numbers of mixture components, for a variety of purposes of analysis. Recently, version 5 of the package has been made available on CRAN. This updated version adds new covariance structures, dimension reduction capabilities for visualisation, model selection criteria, initialisation strategies for the EM algorithm, and bootstrap-based inference, making it a full-featured R package for data analysis via finite mixture modelling.
2016
Scrucca, L., Fop, M., Murphy, T.B., Raftery, A.E. (2016). Mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. THE R JOURNAL, 8(1), 289-317 [10.32614/rj-2016-021].
Scrucca, L.; Fop, M.; Murphy, T. B.; Raftery, A. E.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/997650
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1719
  • ???jsp.display-item.citation.isi??? 1697
social impact