The integration of analytical functions into machine learning-based engine models represents a significant advancement in predictive performance and operational efficiency. This paper focuses on the development of hybrid approaches to model engine combustion and temperature indices and on the synergistic effects of combining traditional analytical methods with modern machine learning techniques (such as artificial neural networks) to enhance the accuracy and robustness of such models. The main innovative contribution of this paper is the integration of analytical functions to improve the extrapolation capabilities of the data-driven models. In this work, it is demonstrated that the integrated models achieve superior predictive accuracy and generalization performance across dynamic engine operating conditions, with respect to purely neural network-based models. Furthermore, the analytical corrective functions force the output of the complete model to follow a physical trend and to assume consistent values also outside the domain of values assumed by the input features during the training procedure of the neural networks. This study highlights the potential of this integrative approach based on the implementation of the effects superposition principle. Such an approach also allows us to solve one of the intrinsic issues of data-driven modeling, without increasing the complexity of the training data’s collection and pre-processing.

Brusa A., Shethia F.P., Petrone B., Cavina N., Moro D., Galasso G., et al. (2024). The Enhancement of Machine Learning-Based Engine Models Through the Integration of Analytical Functions. ENERGIES, 17(21), 1-26 [10.3390/en17215398].

The Enhancement of Machine Learning-Based Engine Models Through the Integration of Analytical Functions

Brusa A.;Shethia F. P.;Petrone B.;Cavina N.;Moro D.;
2024

Abstract

The integration of analytical functions into machine learning-based engine models represents a significant advancement in predictive performance and operational efficiency. This paper focuses on the development of hybrid approaches to model engine combustion and temperature indices and on the synergistic effects of combining traditional analytical methods with modern machine learning techniques (such as artificial neural networks) to enhance the accuracy and robustness of such models. The main innovative contribution of this paper is the integration of analytical functions to improve the extrapolation capabilities of the data-driven models. In this work, it is demonstrated that the integrated models achieve superior predictive accuracy and generalization performance across dynamic engine operating conditions, with respect to purely neural network-based models. Furthermore, the analytical corrective functions force the output of the complete model to follow a physical trend and to assume consistent values also outside the domain of values assumed by the input features during the training procedure of the neural networks. This study highlights the potential of this integrative approach based on the implementation of the effects superposition principle. Such an approach also allows us to solve one of the intrinsic issues of data-driven modeling, without increasing the complexity of the training data’s collection and pre-processing.
2024
Brusa A., Shethia F.P., Petrone B., Cavina N., Moro D., Galasso G., et al. (2024). The Enhancement of Machine Learning-Based Engine Models Through the Integration of Analytical Functions. ENERGIES, 17(21), 1-26 [10.3390/en17215398].
Brusa A.; Shethia F.P.; Petrone B.; Cavina N.; Moro D.; Galasso G.; Kitsopanidis I.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/996805
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact