Anomaly Detection and Segmentation (AD&S) is crucial for industrial quality control. While existing methods excel in generating anomaly scores for each pixel, practical applications require producing a binary segmentation to identify anomalies. Due to the absence of labeled anomalies in many real scenarios, standard practices binarize these maps based on some statistics derived from a validation set containing only nominal samples, resulting in poor segmentation performance. This paper addresses this problem by proposing a test time training strategy to improve the segmentation performance. Indeed, at test time, we can extract rich features directly from anomalous samples to train a classifier that can discriminate defects effectively. Our general approach can work downstream to any AD&S method that provides an anomaly score map as output, even in mul-timodal settings. We demonstrate the effectiveness of our approach over baselines through extensive experimentation and evaluation on MVTec AD and MVTec 3D-AD.
Costanzino A., Zama Ramirez P., Del Moro M., Aiezzo A., Lisanti G., Salti S., et al. (2024). Test Time Training for Industrial Anomaly Segmentation [10.1109/CVPRW63382.2024.00395].
Test Time Training for Industrial Anomaly Segmentation
Costanzino A.;Zama Ramirez P.;Lisanti G.;Salti S.;Di Stefano L.
2024
Abstract
Anomaly Detection and Segmentation (AD&S) is crucial for industrial quality control. While existing methods excel in generating anomaly scores for each pixel, practical applications require producing a binary segmentation to identify anomalies. Due to the absence of labeled anomalies in many real scenarios, standard practices binarize these maps based on some statistics derived from a validation set containing only nominal samples, resulting in poor segmentation performance. This paper addresses this problem by proposing a test time training strategy to improve the segmentation performance. Indeed, at test time, we can extract rich features directly from anomalous samples to train a classifier that can discriminate defects effectively. Our general approach can work downstream to any AD&S method that provides an anomaly score map as output, even in mul-timodal settings. We demonstrate the effectiveness of our approach over baselines through extensive experimentation and evaluation on MVTec AD and MVTec 3D-AD.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.