This paper discusses the challenges of using Large Language Models (LLMs) in medical chatbots for chronic disease self-management. Accordingly, we define an architecture specifically devised to deal with issues related to reliability, clinical trials, and privacy. Two solutions are compared to prevent data disclosure: a filtering mechanism for sensitive data with an external LLM, and a locally deployed LLM using open-source models. Experimental results underscore the challenges in effectively instructing the local LLM so as to provide performances comparable to GPT-3.5.

Montagna S., Aguzzi G., Ferretti S., Pengo M.F., Klopfenstein L.C., Ungolo M., et al. (2024). LLM-based Solutions for Healthcare Chatbots: a Comparative Analysis. 345 E 47TH ST, NEW YORK, NY 10017 USA : Institute of Electrical and Electronics Engineers Inc. [10.1109/PerComWorkshops59983.2024.10503257].

LLM-based Solutions for Healthcare Chatbots: a Comparative Analysis

Montagna S.;Aguzzi G.;Ferretti S.;Magnini M.
2024

Abstract

This paper discusses the challenges of using Large Language Models (LLMs) in medical chatbots for chronic disease self-management. Accordingly, we define an architecture specifically devised to deal with issues related to reliability, clinical trials, and privacy. Two solutions are compared to prevent data disclosure: a filtering mechanism for sensitive data with an external LLM, and a locally deployed LLM using open-source models. Experimental results underscore the challenges in effectively instructing the local LLM so as to provide performances comparable to GPT-3.5.
2024
2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events, PerCom Workshops 2024
346
351
Montagna S., Aguzzi G., Ferretti S., Pengo M.F., Klopfenstein L.C., Ungolo M., et al. (2024). LLM-based Solutions for Healthcare Chatbots: a Comparative Analysis. 345 E 47TH ST, NEW YORK, NY 10017 USA : Institute of Electrical and Electronics Engineers Inc. [10.1109/PerComWorkshops59983.2024.10503257].
Montagna S.; Aguzzi G.; Ferretti S.; Pengo M.F.; Klopfenstein L.C.; Ungolo M.; Magnini M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/994235
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact